About the Project

.体育推单 摩登4『世界杯佣金分红55%,咨询专员:@ky975』.wua.k2q1w9-eoiyaq2o2

AdvancedHelp

(0.003 seconds)

11—20 of 521 matching pages

11: Bibliography
  • J. Abad and J. Sesma (1995) Computation of the regular confluent hypergeometric function. The Mathematica Journal 5 (4), pp. 74–76.
  • R. W. Abernathy and R. P. Smith (1993) Algorithm 724: Program to calculate F-percentiles. ACM Trans. Math. Software 19 (4), pp. 481–483.
  • V. È. Adler (1994) Nonlinear chains and Painlevé equations. Phys. D 73 (4), pp. 335–351.
  • F. V. Andreev and A. V. Kitaev (2002) Transformations R S 4 2 ( 3 ) of the ranks 4 and algebraic solutions of the sixth Painlevé equation. Comm. Math. Phys. 228 (1), pp. 151–176.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • 12: Bibliography N
  • D. Naylor (1990) On an asymptotic expansion of the Kontorovich-Lebedev transform. Applicable Anal. 39 (4), pp. 249–263.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
  • E. Neuman (2004) Inequalities involving Bessel functions of the first kind. JIPAM. J. Inequal. Pure Appl. Math. 5 (4), pp. Article 94, 4 pp. (electronic).
  • 13: 9.4 Maclaurin Series
    9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
    9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
    14: 11.8 Analogs to Kelvin Functions
    §11.8 Analogs to Kelvin Functions
    For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
    15: 22.10 Maclaurin Series
    22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
    22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
    22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
    22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
    22.10.5 cn ( z , k ) = cos z + k 2 4 ( z sin z cos z ) sin z + O ( k 4 ) ,
    16: Bibliography H
  • W. Hahn (1949) Über Orthogonalpolynome, die q -Differenzengleichungen genügen. Math. Nachr. 2, pp. 4–34 (German).
  • J. R. Herndon (1961a) Algorithm 55: Complete elliptic integral of the first kind. Comm. ACM 4 (4), pp. 180.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • E. Hille (1929) Note on some hypergeometric series of higher order. J. London Math. Soc. 4, pp. 50–54.
  • Y. P. Hsu (1993) Development of a Gaussian hypergeometric function code in complex domains. Internat. J. Modern Phys. C 4 (4), pp. 805–840.
  • 17: 4.43 Cubic Equations
    A = ( 4 3 p ) 1 / 2 ,
    B = ( 4 3 p ) 1 / 2 .
  • (a)

    A sin a , A sin ( a + 2 3 π ) , and A sin ( a + 4 3 π ) , with sin ( 3 a ) = 4 q / A 3 , when 4 p 3 + 27 q 2 0 .

  • (b)

    A cosh a , A cosh ( a + 2 3 π i ) , and A cosh ( a + 4 3 π i ) , with cosh ( 3 a ) = 4 q / A 3 , when p < 0 , q < 0 , and 4 p 3 + 27 q 2 > 0 .

  • (c)

    B sinh a , B sinh ( a + 2 3 π i ) , and B sinh ( a + 4 3 π i ) , with sinh ( 3 a ) = 4 q / B 3 , when p > 0 .

  • 18: 24.13 Integrals
    24.13.5 1 / 4 3 / 4 B n ( t ) d t = E n 2 2 n + 1 .
    24.13.8 0 1 E n ( t ) d t = 2 E n + 1 ( 0 ) n + 1 = 4 ( 2 n + 2 1 ) ( n + 1 ) ( n + 2 ) B n + 2 ,
    24.13.11 0 1 E n ( t ) E m ( t ) d t = ( 1 ) n 4 ( 2 m + n + 2 1 ) m ! n ! ( m + n + 2 ) ! B m + n + 2 .
    For other integrals see Prudnikov et al. (1990, pp. 55–57).
    19: Bibliography G
  • W. Gautschi (1979a) Algorithm 542: Incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 482–489.
  • W. Gautschi (1979b) A computational procedure for incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 466–481.
  • I. M. Gessel (2003) Applications of the classical umbral calculus. Algebra Universalis 49 (4), pp. 397–434.
  • S. G. Gindikin (1964) Analysis in homogeneous domains. Uspehi Mat. Nauk 19 (4 (118)), pp. 3–92 (Russian).
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • 20: 12.7 Relations to Other Functions
    12.7.8 U ( 2 , z ) = z 5 / 2 4 2 π ( 2 K 1 4 ( 1 4 z 2 ) + 3 K 3 4 ( 1 4 z 2 ) K 5 4 ( 1 4 z 2 ) ) ,
    12.7.9 U ( 1 , z ) = z 3 / 2 2 2 π ( K 1 4 ( 1 4 z 2 ) + K 3 4 ( 1 4 z 2 ) ) ,
    12.7.11 U ( 1 , z ) = z 3 / 2 2 π ( K 3 4 ( 1 4 z 2 ) K 1 4 ( 1 4 z 2 ) ) .
    12.7.12 u 1 ( a , z ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) ,
    12.7.13 u 2 ( a , z ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) .