About the Project

change of modulus

AdvancedHelp

(0.004 seconds)

31—40 of 92 matching pages

31: 15.12 Asymptotic Approximations
β–Ί
15.12.5 𝐅 ⁑ ( a + Ξ» , b Ξ» c ; 1 2 1 2 ⁒ z ) = 2 ( a + b 1 ) / 2 ⁒ ( z + 1 ) ( c a b 1 ) / 2 ( z 1 ) c / 2 ⁒ ΞΆ ⁒ sinh ⁑ ΞΆ ⁒ ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) 1 c ⁒ ( I c 1 ⁑ ( ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) ⁒ ΞΆ ) ⁒ ( 1 + O ⁑ ( Ξ» 2 ) ) + I c 2 ⁑ ( ( Ξ» + 1 2 ⁒ a 1 2 ⁒ b ) ⁒ ΞΆ ) 2 ⁒ Ξ» + a b ⁒ ( ( c 1 2 ) ⁒ ( c 3 2 ) ⁒ ( 1 ΞΆ coth ⁑ ΞΆ ) + 1 2 ⁒ ( 2 ⁒ c a b 1 ) ⁒ ( a + b 1 ) ⁒ tanh ⁑ ( 1 2 ⁒ ΞΆ ) + O ⁑ ( Ξ» 2 ) ) ) ,
β–Ί
15.12.9 ( z + 1 ) 3 ⁒ Ξ» / 2 ⁒ ( 2 ⁒ Ξ» ) c 1 ⁒ 𝐅 ⁑ ( a + Ξ» , b + 2 ⁒ Ξ» c ; z ) = Ξ» 1 / 3 ⁒ ( e Ο€ ⁒ i ⁒ ( a c + Ξ» + ( 1 / 3 ) ) ⁒ Ai ⁑ ( e 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ξ» 2 / 3 ⁒ Ξ² 2 ) + e Ο€ ⁒ i ⁒ ( c a Ξ» ( 1 / 3 ) ) ⁒ Ai ⁑ ( e 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ξ» 2 / 3 ⁒ Ξ² 2 ) ) ⁒ ( a 0 ⁑ ( ΞΆ ) + O ⁑ ( Ξ» 1 ) ) + Ξ» 2 / 3 ⁒ ( e Ο€ ⁒ i ⁒ ( a c + Ξ» + ( 2 / 3 ) ) ⁒ Ai ⁑ ( e 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ξ» 2 / 3 ⁒ Ξ² 2 ) + e Ο€ ⁒ i ⁒ ( c a Ξ» ( 2 / 3 ) ) ⁒ Ai ⁑ ( e 2 ⁒ Ο€ ⁒ i / 3 ⁒ Ξ» 2 / 3 ⁒ Ξ² 2 ) ) ⁒ ( a 1 ⁑ ( ΞΆ ) + O ⁑ ( Ξ» 1 ) ) ,
β–Ί
15.12.11 β = ( 3 2 ⁒ ΢ + 9 4 ⁒ ln ⁑ ( 2 + e ΢ 2 + e ΢ ) ) 1 / 3 ,
β–Ί
15.12.13 G 0 ⁑ ( ± Ξ² ) = ( 2 + e ± ΞΆ ) c b ( 1 / 2 ) ⁒ ( 1 + e ± ΞΆ ) a c + ( 1 / 2 ) ⁒ ( z 1 e ± ΞΆ ) a + ( 1 / 2 ) ⁒ Ξ² e ΞΆ e ΞΆ .
32: 19.2 Definitions
β–ΊThe cases with Ο• = Ο€ / 2 are the complete integrals: … β–Ί
k c = k ,
β–Ί
p = 1 Ξ± 2 ,
β–Ί
x = tan ⁑ Ο• ,
β–ΊIf 1 < k 1 / sin ⁑ Ο• , then k c is pure imaginary. …
33: 2.11 Remainder Terms; Stokes Phenomenon
β–ΊIn the transition through ΞΈ = Ο€ , erfc ⁑ ( 1 2 ⁒ ρ ⁒ c ⁑ ( ΞΈ ) ) changes very rapidly, but smoothly, from one form to the other; compare the graph of its modulus in Figure 2.11.1 in the case ρ = 100 . …
34: 2.4 Contour Integrals
β–Ί
2.4.20 f ⁑ ( α , w ) = q ⁑ ( α , t ) ⁒ d t d w = q ⁑ ( α , t ) ⁒ w 2 + 2 ⁒ a ⁒ w + b p ⁑ ( α , t ) / t .
β–Ί
2.4.21 w = z 1 / 3 ⁒ v a ,
35: 7.7 Integral Representations
β–Ί
7.7.13 f ⁑ ( z ) = ( 2 ⁒ Ο€ ) 3 / 2 2 ⁒ Ο€ ⁒ i ⁒ c i ⁒ c + i ⁒ ΞΆ s ⁒ Ξ“ ⁑ ( s ) ⁒ Ξ“ ⁑ ( s + 1 2 ) ⁒ Ξ“ ⁑ ( s + 3 4 ) ⁒ Ξ“ ⁑ ( 1 4 s ) ⁒ d s ,
β–Ί
7.7.14 g ⁑ ( z ) = ( 2 ⁒ Ο€ ) 3 / 2 2 ⁒ Ο€ ⁒ i ⁒ c i ⁒ c + i ⁒ ΞΆ s ⁒ Ξ“ ⁑ ( s ) ⁒ Ξ“ ⁑ ( s + 1 2 ) ⁒ Ξ“ ⁑ ( s + 1 4 ) ⁒ Ξ“ ⁑ ( 3 4 s ) ⁒ d s .
36: 28.12 Definitions and Basic Properties
β–ΊFor change of signs of Ξ½ and q , … β–ΊFor changes of sign of Ξ½ , q , and z , … β–Ί
28.12.9 me Ξ½ ⁑ ( z , q ) = e i ⁒ Ξ½ ⁒ Ο€ / 2 ⁒ me Ξ½ ⁑ ( z 1 2 ⁒ Ο€ , q ) ,
β–ΊWhen Ξ½ = s / m is a rational number, but not an integer, all solutions of Mathieu’s equation are periodic with period 2 ⁒ m ⁒ Ο€ . β–ΊFor change of signs of Ξ½ and z , …
37: 23.21 Physical Applications
β–Ί
23.21.3 f ⁑ ( ρ ) = 2 ⁒ ( ( ρ e 1 ⁑ ) ⁒ ( ρ e 2 ⁑ ) ⁒ ( ρ e 3 ⁑ ) ) 1 / 2 .
β–ΊAnother form is obtained by identifying e 1 ⁑ , e 2 ⁑ , e 3 ⁑ as lattice roots (§23.3(i)), and setting … β–Ί
23.21.5 ( ⁑ ( v ) ⁑ ( w ) ) ⁒ ( ⁑ ( w ) ⁑ ( u ) ) ⁒ ( ⁑ ( u ) ⁑ ( v ) ) ⁒ 2 = ( ⁑ ( w ) ⁑ ( v ) ) ⁒ 2 u 2 + ( ⁑ ( u ) ⁑ ( w ) ) ⁒ 2 v 2 + ( ⁑ ( v ) ⁑ ( u ) ) ⁒ 2 w 2 .
38: 2.3 Integrals of a Real Variable
β–Ί
2.3.12 0 f ⁑ ( x ⁒ t ) ⁒ q ⁑ ( t ) ⁒ d t s = 0 β„³ ⁑ f ⁑ ( s + Ξ» ΞΌ ) ⁒ a s x ( s + Ξ» ) / ΞΌ , x + ,
β–Ί
2.3.27 w = ( 2 ⁒ p ⁑ ( Ξ± , 0 ) 2 ⁒ p ⁑ ( Ξ± , Ξ± ) ) 1 / 2 ± ( 2 ⁒ p ⁑ ( Ξ± , t ) 2 ⁒ p ⁑ ( Ξ± , Ξ± ) ) 1 / 2 ,
β–Ί
2.3.28 d w d t = ± 1 ( 2 ⁒ p ⁑ ( Ξ± , t ) 2 ⁒ p ⁑ ( Ξ± , Ξ± ) ) 1 / 2 ⁒ p ⁑ ( Ξ± , t ) t
39: 25.10 Zeros
β–ΊBecause | Z ⁑ ( t ) | = | ΞΆ ⁑ ( 1 2 + i ⁒ t ) | , Z ⁑ ( t ) vanishes at the zeros of ΞΆ ⁑ ( 1 2 + i ⁒ t ) , which can be separated by observing sign changes of Z ⁑ ( t ) . Because Z ⁑ ( t ) changes sign infinitely often, ΞΆ ⁑ ( 1 2 + i ⁒ t ) has infinitely many zeros with t real. … β–ΊBy comparing N ⁑ ( T ) with the number of sign changes of Z ⁑ ( t ) we can decide whether ΞΆ ⁑ ( s ) has any zeros off the line in this region. Sign changes of Z ⁑ ( t ) are determined by multiplying (25.9.3) by exp ⁑ ( i ⁒ Ο‘ ⁑ ( t ) ) to obtain the Riemann–Siegel formula: …where R ⁑ ( t ) = O ⁑ ( t 1 / 4 ) as t . …
40: 2.8 Differential Equations with a Parameter
β–Ί
2.8.2 W = z Λ™ 1 / 2 ⁒ w ,
β–Ί
2.8.8 d 2 W / d ξ 2 = ( u 2 ⁒ ξ m + ψ ⁑ ( ξ ) ) ⁒ W ,