About the Project

of%20the%20second%20kind

AdvancedHelp

(0.005 seconds)

11—20 of 20 matching pages

11: Bibliography K
  • A. A. Kapaev (1991) Essential singularity of the Painlevé function of the second kind and the nonlinear Stokes phenomenon. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187, pp. 139–170 (Russian).
  • M. K. Kerimov and S. L. Skorokhodov (1984b) Calculation of the complex zeros of the modified Bessel function of the second kind and its derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 24 (8), pp. 1150–1163.
  • M. K. Kerimov and S. L. Skorokhodov (1985a) Calculation of the complex zeros of a Bessel function of the second kind and its derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 25 (10), pp. 1457–1473, 1581 (Russian).
  • B. J. King, R. V. Baier, and S. Hanish (1970) A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives. NRL Report No. 7012 Naval Res. Lab.  Washingtion, D.C..
  • B. J. King and A. L. Van Buren (1970) A Fortran computer program for calculating the prolate and oblate angle functions of the first kind and their first and second derivatives. NRL Report No. 7161 Naval Res. Lab.  Washingtion, D.C..
  • 12: 26.14 Permutations: Order Notation
    A descent of a permutation is a pair of adjacent elements for which the first is larger than the second. … In this subsection S ( n , k ) is again the Stirling number of the second kind26.8), and B m is the m th Bernoulli number (§24.2(i)). …
    26.14.7 n k = j = 0 n k ( 1 ) n k j j ! ( n j k ) S ( n , j ) ,
    26.14.12 S ( n , m ) = 1 m ! k = 0 n 1 n k ( k n m ) , n m , n 1 .
    13: 10.3 Graphics
    See accompanying text
    Figure 10.3.10: H 0 ( 1 ) ( x + i y ) , 10 x 5 , 2.8 y 4 . … Magnify 3D Help
    See accompanying text
    Figure 10.3.12: H 1 ( 1 ) ( x + i y ) , 10 x 5 , 2.8 y 4 . … Magnify 3D Help
    See accompanying text
    Figure 10.3.14: H 5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    See accompanying text
    Figure 10.3.16: H 5.5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    14: Bibliography C
  • B. C. Carlson (1964) Normal elliptic integrals of the first and second kinds. Duke Math. J. 31 (3), pp. 405–419.
  • B. C. Carlson (1987) A table of elliptic integrals of the second kind. Math. Comp. 49 (180), pp. 595–606, S13–S17.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • H. S. Cohl, J. Park, and H. Volkmer (2021) Gauss hypergeometric representations of the Ferrers function of the second kind. SIGMA Symmetry Integrability Geom. Methods Appl. 17, pp. Paper 053, 33.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • 15: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • F. A. Paxton and J. E. Rollin (1959) Tables of the Incomplete Elliptic Integrals of the First and Third Kind. Technical report Curtiss-Wright Corp., Research Division, Quehanna, PA.
  • L. Piela (2014) Ideas of Quantum Chemistry. second edition, Elsevier, Amsterdam-New York.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1986b) Integrals and Series: Special Functions, Vol. 2. Gordon & Breach Science Publishers, New York.
  • 16: 2.11 Remainder Terms; Stokes Phenomenon
    For second-order differential equations, see Olde Daalhuis and Olver (1995a), Olde Daalhuis (1995, 1996), and Murphy and Wood (1997). … Further improvements in accuracy can be realized by making a second application of the Euler transformation; see Olver (1997b, pp. 540–543). … For large | z | , with | ph z | 3 2 π δ ( < 3 2 π ), the Whittaker function of the second kind has the asymptotic expansion (§13.19) …With z = 1.0 , κ = 2.3 , μ = 0.5 , the values of a n to 8D are supplied in the second column of Table 2.11.1. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    17: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • G. Blanch and D. S. Clemm (1965) Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind. U.S. Government Printing Office, Washington, D.C..
  • W. E. Bleick and P. C. C. Wang (1974) Asymptotics of Stirling numbers of the second kind. Proc. Amer. Math. Soc. 42 (2), pp. 575–580.
  • 18: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • A. Gil and J. Segura (2003) Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41 (3), pp. 827–855.
  • K. Gottfried and T. Yan (2004) Quantum mechanics: fundamentals. Second edition, Springer-Verlag, New York.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 19: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • F. Riesz and B. Sz.-Nagy (1990) Functional analysis. Dover Books on Advanced Mathematics, Dover Publications, Inc., New York.
  • 20: Errata
  • Subsection 19.2(ii) and Equation (19.2.9)

    The material surrounding (19.2.8), (19.2.9) has been updated so that the complementary complete elliptic integrals of the first and second kind are defined with consistent multivalued properties and correct analytic continuation. In particular, (19.2.9) has been corrected to read

    19.2.9
    K ( k ) = { K ( k ) , | ph k | 1 2 π , K ( k ) 2 i K ( k ) , 1 2 π < ± ph k < π ,
    E ( k ) = { E ( k ) , | ph k | 1 2 π , E ( k ) 2 i ( K ( k ) E ( k ) ) , 1 2 π < ± ph k < π
  • Chapters 1 Algebraic and Analytic Methods, 10 Bessel Functions, 14 Legendre and Related Functions, 18 Orthogonal Polynomials, 29 Lamé Functions

    Over the preceding two months, the subscript parameters of the Ferrers and Legendre functions, 𝖯 n , 𝖰 n , P n , Q n , 𝑸 n and the Laguerre polynomial, L n , were incorrectly displayed as superscripts. Reported by Roy Hughes on 2022-05-23

  • Equations (14.5.3), (14.5.4)

    The constraints in (14.5.3), (14.5.4) on ν + μ have been corrected to exclude all negative integers since the Ferrers function of the second kind is not defined for these values.

    Reported by Hans Volkmer on 2021-06-02

  • Paragraph Confluent Hypergeometric Functions (in §7.18(iv))

    A note about the multivalued nature of the Kummer confluent hypergeometric function of the second kind U on the right-hand side of (7.18.10) was inserted.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).