About the Project

linear transformation

AdvancedHelp

(0.002 seconds)

21—30 of 38 matching pages

21: Bibliography B
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • P. M. Batchelder (1967) An Introduction to Linear Difference Equations. Dover Publications Inc., New York.
  • R. Blackmore and B. Shizgal (1985) Discrete ordinate solution of Fokker-Planck equations with non-linear coefficients. Phys. Rev. A 31 (3), pp. 1855–1868.
  • C. Brezinski (1999) Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21 (2), pp. 764–781.
  • J. C. Butcher (1987) The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods. John Wiley & Sons Ltd., Chichester.
  • 22: 1.16 Distributions
    The linear space of all test functions with the above definition of convergence is called a test function space. … Tempered distributions are continuous linear functionals on this space of test functions. …
    §1.16(vii) Fourier Transforms of Tempered Distributions
    Then its Fourier transform is …
    §1.16(viii) Fourier Transforms of Special Distributions
    23: Bibliography J
  • A. J. Jerri (1982) A note on sampling expansion for a transform with parabolic cylinder kernel. Inform. Sci. 26 (2), pp. 155–158.
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • H. K. Johansen and K. Sørensen (1979) Fast Hankel transforms. Geophysical Prospecting 27 (4), pp. 876–901.
  • W. B. Jones and W. Van Assche (1998) Asymptotic behavior of the continued fraction coefficients of a class of Stieltjes transforms including the Binet function. In Orthogonal functions, moment theory, and continued fractions (Campinas, 1996), Lecture Notes in Pure and Appl. Math., Vol. 199, pp. 257–274.
  • 24: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • S. A. Tumarkin (1959) Asymptotic solution of a linear nonhomogeneous second order differential equation with a transition point and its application to the computations of toroidal shells and propeller blades. J. Appl. Math. Mech. 23, pp. 1549–1565.
  • 25: 32.2 Differential Equations
    They are distinct modulo Möbius (bilinear) transformations …The fifty equations can be reduced to linear equations, solved in terms of elliptic functions (Chapters 22 and 23), or reduced to one of P I P VI . …
    32.2.25 w ( z ; α ) = ϵ W ( ζ ) + 1 ϵ 5 ,
    32.2.27 d 2 W d ζ 2 = 6 W 2 + ζ + ϵ 6 ( 2 W 3 + ζ W ) ;
    32.2.28 w ( z ; α , β , γ , δ ) = 1 + 2 ϵ W ( ζ ; a ) ,
    26: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995a) Hyperasymptotic solutions of second-order linear differential equations. I. Methods Appl. Anal. 2 (2), pp. 173–197.
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • A. B. Olde Daalhuis (1995) Hyperasymptotic solutions of second-order linear differential equations. II. Methods Appl. Anal. 2 (2), pp. 198–211.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • 27: Bibliography L
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • D. W. Lozier (1980) Numerical Solution of Linear Difference Equations. NBSIR Technical Report 80-1976, National Bureau of Standards, Gaithersburg, MD 20899.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • R. J. Lyman and W. W. Edmonson (2001) Linear prediction of bandlimited processes with flat spectral densities. IEEE Trans. Signal Process. 49 (7), pp. 1564–1569.
  • 28: Bibliography F
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • R. Fuchs (1907) Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63 (3), pp. 301–321.
  • 29: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • A. Gil and J. Segura (2003) Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41 (3), pp. 827–855.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • E. P. Gross and S. Ziering (1958) Kinetic theory of linear shear flow. Phys. Fluids 1 (3), pp. 215–224.
  • 30: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    §1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    V becomes a normed linear vector space. …
    Bounded and Unbounded Linear Operators