About the Project

Fourier%E2%80%93Bessel%20expansion

AdvancedHelp

(0.002 seconds)

11—20 of 460 matching pages

11: Bibliography O
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • A. B. Olde Daalhuis (1994) Asymptotic expansions for q -gamma, q -exponential, and q -Bessel functions. J. Math. Anal. Appl. 186 (3), pp. 896–913.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 12: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • T. W. Körner (1989) Fourier Analysis. 2nd edition, Cambridge University Press, Cambridge.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 13: Peter L. Walker
    Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 14: 28.11 Expansions in Series of Mathieu Functions
    §28.11 Expansions in Series of Mathieu Functions
    See Meixner and Schäfke (1954, §2.28), and for expansions in the case of the exceptional values of q see Meixner et al. (1980, p. 33). …
    28.11.3 1 = 2 n = 0 A 0 2 n ( q ) ce 2 n ( z , q ) ,
    28.11.4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) , m 0 ,
    28.11.7 sin ( 2 m + 2 ) z = n = 0 B 2 m + 2 2 n + 2 ( q ) se 2 n + 2 ( z , q ) .
    15: 6.16 Mathematical Applications
    Consider the Fourier series … Compare Figure 6.16.1. … It occurs with Fourier-series expansions of all piecewise continuous functions. … …
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    16: 28.35 Tables
    §28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Stratton et al. (1941) includes b n , b n , and the corresponding Fourier coefficients for Se n ( c , x ) and So n ( c , x ) for n = 0 or 1 ( 1 ) 4 , c = 0 ( .1 or .2 ) 4.5 . Precision is mostly 5S. Notation: c = 2 q , b n = a n + 2 q , b n = b n + 2 q , and for Se n ( c , x ) , So n ( c , x ) see §28.1.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 17: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    §28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    Also, with I n and K n denoting the modified Bessel functions (§10.25(ii)), and again with s = 0 , 1 , 2 , , …
    28.24.10 ε s Ke 2 m ( z , h ) = = 0 A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( I s ( h e z ) K + s ( h e z ) + I + s ( h e z ) K s ( h e z ) ) ,
    The expansions (28.24.1)–(28.24.13) converge absolutely and uniformly on compact sets of the z -plane. For further power series of Mathieu radial functions of integer order for small parameters and improved convergence rate see Larsen et al. (2009).
    18: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • A. Terras (1999) Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, Vol. 43, Cambridge University Press, Cambridge.
  • E. C. Titchmarsh (1986a) Introduction to the Theory of Fourier Integrals. Third edition, Chelsea Publishing Co., New York.
  • G. P. Tolstov (1962) Fourier Series. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 19: 27.10 Periodic Number-Theoretic Functions
    Every function periodic (mod k ) can be expressed as a finite Fourier series of the form … is a periodic function of n ( mod k ) and has the finite Fourier-series expansionThe finite Fourier expansion of a primitive Dirichlet character χ ( mod k ) has the form …
    20: 28.23 Expansions in Series of Bessel Functions
    §28.23 Expansions in Series of Bessel Functions
    28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
    28.23.7 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 1 2 π , h 2 ) ) 1 = 0 A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h sinh z ) ,
    28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,