About the Project

Euler%20totient

AdvancedHelp

(0.002 seconds)

21—30 of 452 matching pages

21: 25.12 Polylogarithms
The notation Li 2 ( z ) was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): …
See accompanying text
Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
25.12.11 Li s ( z ) z Γ ( s ) 0 x s 1 e x z d x ,
Sometimes the factor 1 / Γ ( s + 1 ) is omitted. …
22: 5.11 Asymptotic Expansions
The scaled gamma function Γ ( z ) is defined in (5.11.3) and its main property is Γ ( z ) 1 as z in the sector | ph z | π δ . Wrench (1968) gives exact values of g k up to g 20 . …
5.11.12 Γ ( z + a ) Γ ( z + b ) z a b ,
5.11.13 Γ ( z + a ) Γ ( z + b ) z a b k = 0 G k ( a , b ) z k ,
5.11.19 Γ ( z + a ) Γ ( z + b ) Γ ( z + c ) k = 0 ( 1 ) k ( c a ) k ( c b ) k k ! Γ ( a + b c + z k ) .
23: 24.18 Physical Applications
§24.18 Physical Applications
Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).
24: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 25: 8.17 Incomplete Beta Functions
    8.17.2 I x ( a , b ) = B x ( a , b ) / B ( a , b ) ,
    where, as in §5.12, B ( a , b ) denotes the beta function:
    8.17.3 B ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) .
    8.17.20 I x ( a , b ) = I x ( a + 1 , b ) + x a ( x ) b a B ( a , b ) ,
    8.17.21 I x ( a , b ) = I x ( a , b + 1 ) x a ( x ) b b B ( a , b ) .
    26: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
    where γ is Euler’s constant (§5.2(ii)). …
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    27: 24.3 Graphs
    See accompanying text
    Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
    28: 25.6 Integer Arguments
    §25.6(i) Function Values
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
    where γ 1 is given by (25.2.5). …
    25.6.13 ( 1 ) k ζ ( k ) ( 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n + 1 m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n + 1 ) ζ ( m r ) ( 2 n + 1 ) ,
    29: 25.5 Integral Representations
    25.5.1 ζ ( s ) = 1 Γ ( s ) 0 x s 1 e x 1 d x , s > 1 .
    25.5.13 ζ ( s ) = π s / 2 s ( s 1 ) Γ ( 1 2 s ) + π s / 2 Γ ( 1 2 s ) 1 ( x s / 2 + x ( 1 s ) / 2 ) ω ( x ) x d x , s 1 ,
    In (25.5.15)–(25.5.19), 0 < s < 1 , ψ ( x ) is the digamma function, and γ is Euler’s constant (§5.2). …
    25.5.17 ζ ( 1 + s ) = sin ( π s ) π 0 ( γ + ψ ( 1 + x ) ) x s 1 d x ,
    25.5.19 ζ ( m + s ) = ( 1 ) m 1 Γ ( s ) sin ( π s ) π Γ ( m + s ) 0 ψ ( m ) ( 1 + x ) x s d x , m = 1 , 2 , 3 , .
    30: Errata
  • Subsection 25.2(ii) Other Infinite Series

    It is now mentioned that (25.2.5), defines the Stieltjes constants γ n . Consequently, γ n in (25.2.4), (25.6.12) are now identified as the Stieltjes constants.

  • Equation (27.12.8)
    27.12.8 li ( x ) ϕ ( m ) + O ( x exp ( λ ( α ) ( ln x ) 1 / 2 ) ) , m ( ln x ) α , α > 0

    Originally the first term was given incorrectly by x ϕ ( m ) .

    Reported 2017-12-04 by Gergő Nemes.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equation (17.13.3)
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β )

    Originally the differential was identified incorrectly as d q t ; the correct differential is d t .

    Reported 2011-04-08.

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.