improper integral
♦
7 matching pages ♦
(0.001 seconds)
7 matching pages
1: 25.5 Integral Representations
…
►
25.5.1
.
►
ⓘ
- Symbols:
- : gamma function, : Riemann zeta function, : differential, : base of natural logarithm, : integral, : real part, : real variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Erdélyi et al. (1953a, (1.12.4), p. 32)
- A&S Ref:
- 23.2.7
- Referenced by:
- §25.12(ii), (25.5.2), (25.5.6)
- Permalink:
- http://dlmf.nist.gov/25.5.E1
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.5(i), §25.5 and Ch.25
25.5.2
.
►
ⓘ
- Symbols:
- : gamma function, : Riemann zeta function, : differential, : base of natural logarithm, : integral, : real part, : real variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Proof sketch:
- Derivable from (25.5.1) by integration by parts.
- Permalink:
- http://dlmf.nist.gov/25.5.E2
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.5(i), §25.5 and Ch.25
25.5.3
.
►
ⓘ
- Symbols:
- : gamma function, : Riemann zeta function, : differential, : base of natural logarithm, : integral, : real part, : real variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Erdélyi et al. (1953a, (1.12.5), p. 32)
- A&S Ref:
- 23.2.8
- Referenced by:
- (25.5.4)
- Permalink:
- http://dlmf.nist.gov/25.5.E3
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.5(i), §25.5 and Ch.25
25.5.4
.
►
ⓘ
- Symbols:
- : gamma function, : Riemann zeta function, : differential, : base of natural logarithm, : integral, : real part, : real variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Proof sketch:
- Derivable from (25.5.3) by integration by parts.
- Permalink:
- http://dlmf.nist.gov/25.5.E4
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.5(i), §25.5 and Ch.25
25.5.5
.
…
ⓘ
- Symbols:
- : Riemann zeta function, : differential, : floor of , : integral, : real part, : real variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Titchmarsh (1986b, (2.1.6), p. 15)
- Permalink:
- http://dlmf.nist.gov/25.5.E5
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.5(i), §25.5 and Ch.25
2: 25.14 Lerch’s Transcendent
…
►
25.14.5
, if ;
, if .
►
ⓘ
- Symbols:
- : gamma function, : Lerch’s transcendent, : half-closed interval, : complex plane, : differential, : element of, : base of natural logarithm, : integral, : real part, : set subtraction, : real variable, : real or complex parameter, : complex variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Erdélyi et al. (1953a, (1.11.3), p. 27)
- Referenced by:
- Erratum (V1.1.4) for Equation (25.14.5)
- Permalink:
- http://dlmf.nist.gov/25.14.E5
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.14(ii), §25.14 and Ch.25
25.14.6
if ;
, if .
…
ⓘ
- Symbols:
- : Lerch’s transcendent, : the ratio of the circumference of a circle to its diameter, : differential, : base of natural logarithm, : integral, : arctangent function, : principal branch of logarithm function, : real part, : sine function, : real variable, : real or complex parameter, : complex variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Erdélyi et al. (1953a, (1.11.4), p. 28)
- Notes:
- For the case see Erdélyi et al. (1953a, (1.11.4), p. 28). In the case one checks that the first integral converges absolutely iff .
- Referenced by:
- Erratum (V1.1.4) for Equation (25.14.6)
- Permalink:
- http://dlmf.nist.gov/25.14.E6
- Encodings:
- pMML, png, TeX
- Clarification (effective with 1.1.4):
-
The constraint which originally read
“ if ; if ” has been improved to be
“ if ;
, if ”.
Suggested 2021-08-23 by Gergő Nemes
- See also:
- Annotations for §25.14(ii), §25.14 and Ch.25
3: 25.12 Polylogarithms
…
►
25.12.11
…
►
ⓘ
- Symbols:
- : gamma function, : differential, : equals by definition, : base of natural logarithm, : integral, : polylogarithm, : real variable, : complex variable and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Lewin (1981, (7.188), p. 236)
- Referenced by:
- (25.12.16), §25.12(ii)
- Permalink:
- http://dlmf.nist.gov/25.12.E11
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.12(ii), §25.12(ii), §25.12 and Ch.25
25.12.14
,
►
ⓘ
- Defines:
- : Fermi–Dirac integral (locally)
- Symbols:
- : gamma function, : differential, : base of natural logarithm, : integral, : real variable and : complex variable
- Keywords:
- definition, Fermi–Dirac integral, improperintegral, integral representation
- Source:
- Dingle (1957b, (1), p. 226)
- Referenced by:
- (25.12.16), 3rd item, 5th item
- Permalink:
- http://dlmf.nist.gov/25.12.E14
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.12(iii), §25.12 and Ch.25
25.12.15
, ; or , ,
…
ⓘ
- Defines:
- : Bose–Einstein integral (locally)
- Symbols:
- : gamma function, : differential, : base of natural logarithm, : integral, : real variable and : complex variable
- Keywords:
- Bose–Einstein integral, definition, improperintegral, integral representation
- Source:
- Dingle (1957a, p. 240)
- Referenced by:
- (25.12.16)
- Permalink:
- http://dlmf.nist.gov/25.12.E15
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.12(iii), §25.12 and Ch.25
4: 25.11 Hurwitz Zeta Function
…
►
25.11.5
, , , .
…
►
ⓘ
- Symbols:
- : Hurwitz zeta function, : differential, : floor of , : integral, : real part, : nonnegative integer, : real variable, : real or complex parameter and : complex variable
- Keywords:
- Euler–Maclaurin formula, improperintegral
- Source:
- Apostol (1976, (25), p. 269)
- Referenced by:
- (25.11.7)
- Permalink:
- http://dlmf.nist.gov/25.11.E5
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.11(iii), §25.11 and Ch.25
25.11.25
, .
►
ⓘ
- Symbols:
- : gamma function, : Hurwitz zeta function, : differential, : base of natural logarithm, : integral, : real part, : real variable, : real or complex parameter and : complex variable
- Keywords:
- improperintegral, integral representation
- Sources:
- Srivastava and Choi (2001, (2), p. 89); Apostol (1976, (5), p. 251)
- Referenced by:
- (25.11.27), (25.11.30), (25.11.35), §25.11(x)
- Permalink:
- http://dlmf.nist.gov/25.11.E25
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.11(vii), §25.11 and Ch.25
25.11.26
, .
…
►
ⓘ
- Symbols:
- : Hurwitz zeta function, : differential, : floor of , : integral, : real part, : real variable, : real or complex parameter and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Berndt (1972, (5.3), p. 156)
- Permalink:
- http://dlmf.nist.gov/25.11.E26
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.11(vii), §25.11 and Ch.25
25.11.29
, .
…
►
ⓘ
- Symbols:
- : Hurwitz zeta function, : the ratio of the circumference of a circle to its diameter, : differential, : base of natural logarithm, : integral, : arctangent function, : real part, : sine function, : real variable, : real or complex parameter and : complex variable
- Keywords:
- improperintegral, integral representation
- Source:
- Erdélyi et al. (1953a, (1.10.7), p. 26)
- Permalink:
- http://dlmf.nist.gov/25.11.E29
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.11(vii), §25.11 and Ch.25
25.11.31
, .
…
ⓘ
- Symbols:
- : gamma function, : Hurwitz zeta function, : differential, : base of natural logarithm, : hyperbolic cosine function, : integral, : real part, : real variable, : real or complex parameter and : complex variable
- Keywords:
- improperintegral, integral representation
- Proof sketch:
- The improper integral can be evaluated by using , changing variables , and then applying (25.11.35).
- Permalink:
- http://dlmf.nist.gov/25.11.E31
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.11(viii), §25.11 and Ch.25
5: 25.16 Mathematical Applications
…
►
25.16.6
►
ⓘ
- Symbols:
- : Euler’s constant, : Euler sums, : Riemann zeta function, : differential, : integral, : periodic Bernoulli functions, : nonnegative integer, : nonnegative integer, : real variable and : complex variable
- Keywords:
- Euler sum, finite sum, improperintegral, infinite series, integral representation, series representation
- Source:
- Apostol and Vu (1984, (3), p. 87)
- Permalink:
- http://dlmf.nist.gov/25.16.E6
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.16(ii), §25.16 and Ch.25
25.16.7
…
ⓘ
- Symbols:
- : Euler sums, : Riemann zeta function, : binomial coefficient, : differential, : integral, : periodic Bernoulli functions, : nonnegative integer, : nonnegative integer, : real variable and : complex variable
- Keywords:
- Euler sum, finite sum, improperintegral, infinite series, integral representation, series representation
- Source:
- Apostol and Vu (1984, (6), p. 88)
- Permalink:
- http://dlmf.nist.gov/25.16.E7
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.16(ii), §25.16 and Ch.25
6: 25.2 Definition and Expansions
…
►
25.2.8
, .
►
ⓘ
- Symbols:
- : Riemann zeta function, : differential, : floor of , : integral, : real part, : nonnegative integer, : real variable, : real or complex parameter and : complex variable
- Keywords:
- Euler–Maclaurin formula, improperintegral
- Source:
- Apostol (1976, (25), p. 269)
- Proof sketch:
- Derivable from Apostol (1976, Theorem 12.21, p. 269) by setting and .
- A&S Ref:
- 23.2.9
- Referenced by:
- (25.2.9)
- Permalink:
- http://dlmf.nist.gov/25.2.E8
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.2(iii), §25.2 and Ch.25
25.2.9
; .
…
ⓘ
- Symbols:
- : Bernoulli numbers, : Riemann zeta function, : binomial coefficient, : differential, : integral, : periodic Bernoulli functions, : real part, : nonnegative integer, : nonnegative integer, : real variable and : complex variable
- Keywords:
- Euler–Maclaurin formula, improperintegral
- Proof sketch:
- Derivable from (25.2.8) by repeated integration by parts.
- Referenced by:
- §25.18(i), (25.2.10)
- Permalink:
- http://dlmf.nist.gov/25.2.E9
- Encodings:
- pMML, png, TeX
- See also:
- Annotations for §25.2(iii), §25.2 and Ch.25
7: 28.32 Mathematical Applications
…
►defines a solution of Mathieu’s equation, provided that (in the case of an improper curve) the integral converges with respect to uniformly on compact subsets of .
…