About the Project
25 Zeta and Related FunctionsRiemann Zeta Function

§25.6 Integer Arguments

Contents
  1. §25.6(i) Function Values
  2. §25.6(ii) Derivative Values
  3. §25.6(iii) Recursion Formulas

§25.6(i) Function Values

25.6.1 ζ(0) =12,
ζ(2) =π26,
ζ(4) =π490,
ζ(6) =π6945.
25.6.2 ζ(2n) =(2π)2n2(2n)!|B2n|,
n=1,2,3,.
25.6.3 ζ(n) =Bn+1n+1,
n=1,2,3,.
25.6.4 ζ(2n) =0,
n=1,2,3,.
25.6.5 ζ(k+1)=1k!n1=1nk=11n1nk(n1++nk),
k=1,2,3,.
25.6.6 ζ(2k+1)=(1)k+1(2π)2k+12(2k+1)!01B2k+1(t)cot(πt)dt,
k=1,2,3,.
25.6.7 ζ(2) =010111xydxdy.
25.6.8 ζ(2) =3k=11k2(2kk).
25.6.9 ζ(3) =52k=1(1)k1k3(2kk).
25.6.10 ζ(4) =3617k=11k4(2kk).

§25.6(ii) Derivative Values

25.6.11 ζ(0)=12ln(2π).
25.6.12 ζ′′(0)=12(ln(2π))2+12γ2124π2+γ1,

where γ1 is given by (25.2.5).

With c defined by (25.4.6) and n=1,2,3,,

25.6.13 (1)kζ(k)(2n) =2(1)n(2π)2n+1m=0kr=0m(km)(mr)(ckm)Γ(r)(2n+1)ζ(mr)(2n+1),
25.6.14 (1)kζ(k)(12n) =2(1)n(2π)2nm=0kr=0m(km)(mr)(ckm)Γ(r)(2n)ζ(mr)(2n),
25.6.15 ζ(2n) =(1)n+1(2π)2n2(2n)!(2nζ(12n)(ψ(2n)ln(2π))B2n).

§25.6(iii) Recursion Formulas

25.6.16 (n+12)ζ(2n)=k=1n1ζ(2k)ζ(2n2k),
n2.
25.6.17 (n+34)ζ(4n+2)=k=1nζ(2k)ζ(4n+22k),
n1.
25.6.18 (n+14)ζ(4n)+12(ζ(2n))2=k=1nζ(2k)ζ(4n2k),
n1.
25.6.19 (m+n+32)ζ(2m+2n+2)=(k=1m+k=1n)ζ(2k)ζ(2m+2n+22k),
m0, n0, m+n1.
25.6.20 12(22n1)ζ(2n)=k=1n1(22n2k1)ζ(2n2k)ζ(2k),
n2.

For related results see Basu and Apostol (2000).