About the Project

.1994%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E5%B0%8F%E7%BB%84%E5%88%86%E7%BB%84_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F2018%E4%B8%96%E7%95%8C%E6%9D%AF%E7%9B%B4%E6%92%AD%E5%92%AA%E5%92%95_b5p6v3_2022%E5%B9%B411%E6%9C%8830%E6%97%A57%E6%97%B657%E5%88%8610%E7%A7%92_z9fzftt9n.cc

AdvancedHelp

(0.094 seconds)

11—20 of 862 matching pages

11: Bibliography M
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • J. N. Merner (1962) Algorithm 149: Complete elliptic integral. Comm. ACM 5 (12), pp. 605.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • E. W. Montroll (1964) Lattice Statistics. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), University of California Engineering and Physical Sciences Extension Series, pp. 96–143.
  • 12: 5.13 Integrals
    5.13.1 1 2 π i c i c + i Γ ( s + a ) Γ ( b s ) z s d s = Γ ( a + b ) z a ( 1 + z ) a + b , ( a + b ) > 0 , a < c < b , | ph z | < π .
    5.13.2 1 2 π | Γ ( a + i t ) | 2 e ( 2 b π ) t d t = Γ ( 2 a ) ( 2 sin b ) 2 a , a > 0 , 0 < b < π .
    5.13.3 1 2 π Γ ( a + i t ) Γ ( b + i t ) Γ ( c i t ) Γ ( d i t ) d t = Γ ( a + c ) Γ ( a + d ) Γ ( b + c ) Γ ( b + d ) Γ ( a + b + c + d ) , a , b , c , d > 0 .
    5.13.4 d t Γ ( a + t ) Γ ( b + t ) Γ ( c t ) Γ ( d t ) = Γ ( a + b + c + d 3 ) Γ ( a + c 1 ) Γ ( a + d 1 ) Γ ( b + c 1 ) Γ ( b + d 1 ) , ( a + b + c + d ) > 3 .
    5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
    13: 34.5 Basic Properties: 6 j Symbol
    34.5.1 { j 1 j 2 j 3 0 j 3 j 2 } = ( 1 ) J ( ( 2 j 2 + 1 ) ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.2 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 + 1 2 } = ( 1 ) J ( ( j 1 + j 3 j 2 ) ( j 1 + j 2 j 3 + 1 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.3 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 1 2 } = ( 1 ) J ( ( j 2 + j 3 j 1 ) ( j 1 + j 2 + j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.4 { j 1 j 2 j 3 1 j 3 1 j 2 1 } = ( 1 ) J ( J ( J + 1 ) ( J 2 j 1 ) ( J 2 j 1 1 ) ( 2 j 2 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.5 { j 1 j 2 j 3 1 j 3 1 j 2 } = ( 1 ) J ( 2 ( J + 1 ) ( J 2 j 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    14: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    15: 7.14 Integrals
    7.14.1 0 e 2 i a t erfc ( b t ) d t = 1 a π F ( a b ) + i 2 a ( 1 e ( a / b ) 2 ) , a , | ph b | < 1 4 π .
    7.14.2 0 e a t erf ( b t ) d t = 1 a e a 2 / ( 4 b 2 ) erfc ( a 2 b ) , a > 0 , | ph b | < 1 4 π ,
    7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
    7.14.7 0 e a t C ( 2 t π ) d t = ( a 2 + 1 + a ) 1 2 2 a a 2 + 1 , a > 0 ,
    For collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
    16: Bibliography F
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • 17: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001) Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31 (1-2), pp. 89–96.
  • 18: 9.8 Modulus and Phase
    In terms of Bessel functions, and with ξ = 2 3 | x | 3 / 2 , …
    9.8.20 M 2 ( x ) 1 π ( x ) 1 / 2 k = 0 1 3 5 ( 6 k 1 ) k ! ( 96 ) k 1 x 3 k ,
    9.8.21 N 2 ( x ) ( x ) 1 / 2 π k = 0 1 3 5 ( 6 k 1 ) k ! ( 96 ) k 1 + 6 k 1 6 k 1 x 3 k ,
    9.8.22 θ ( x ) π 4 + 2 3 ( x ) 3 / 2 ( 1 + 5 32 1 x 3 + 1105 6144 1 x 6 + 82825 65536 1 x 9 + 12820 31525 587 20256 1 x 12 + ) ,
    9.8.23 ϕ ( x ) π 4 + 2 3 ( x ) 3 / 2 ( 1 7 32 1 x 3 1463 6144 1 x 6 4 95271 3 27680 1 x 9 2065 30429 83 88608 1 x 12 ) .
    19: 4.40 Integrals
    4.40.8 0 sinh ( a x ) sinh ( π x ) d x = 1 2 tan ( 1 2 a ) , π < a < π ,
    4.40.9 e a x ( cosh ( 1 2 x ) ) 2 d x = 4 π a sin ( π a ) , 1 < a < 1 ,
    4.40.10 0 tanh ( a x ) tanh ( b x ) x d x = ln ( a b ) , a > 0 , b > 0 .
    Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
    20: 9.9 Zeros
    They are denoted by a k , a k , b k , b k , respectively, arranged in ascending order of absolute value for k = 1 , 2 , . They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. …
    9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
    9.9.21 W ( t ) π 1 / 2 t 1 / 6 ( 1 7 96 t 2 + 1673 6144 t 4 843 94709 265 42080 t 6 + 78 02771 35421 1 01921 58720 t 8 20444 90510 51945 6 52298 15808 t 10 + ) .
    For error bounds for the asymptotic expansions of a k , b k , a k , and b k see Pittaluga and Sacripante (1991), and a conjecture given in Fabijonas and Olver (1999). …