About the Project
10 Bessel FunctionsBessel and Hankel Functions

§10.18 Modulus and Phase Functions

  1. §10.18(i) Definitions
  2. §10.18(ii) Basic Properties
  3. §10.18(iii) Asymptotic Expansions for Large Argument

§10.18(i) Definitions

For ν0 and x>0

10.18.1 Mν(x)eiθν(x) =Hν(1)(x),
10.18.2 Nν(x)eiϕν(x) =Hν(1)(x),

where Mν(x) (>0), Nν(x) (>0), θν(x), and ϕν(x) are continuous real functions of ν and x, with the branches of θν(x) and ϕν(x) fixed by

10.18.3 θν(x) 12π,
ϕν(x) 12π,

§10.18(ii) Basic Properties

10.18.4 Jν(x) =Mν(x)cosθν(x),
Yν(x) =Mν(x)sinθν(x),
10.18.5 Jν(x) =Nν(x)cosϕν(x),
Yν(x) =Nν(x)sinϕν(x),
10.18.6 Mν(x) =(Jν2(x)+Yν2(x))12,
Nν(x) =(Jν2(x)+Yν2(x))12,
10.18.7 θν(x) =Arctan(Yν(x)/Jν(x)),
ϕν(x) =Arctan(Yν(x)/Jν(x)).
10.18.8 Mν2(x)θν(x) =2πx,
Nν2(x)ϕν(x) =2(x2ν2)πx3,
10.18.9 Nν2(x)=Mν2(x)+Mν2(x)θν2(x)=Mν2(x)+4(πxMν(x))2,
10.18.10 (x2ν2)Mν(x)Mν(x)+x2Nν(x)Nν(x)+xNν2(x)=0.
10.18.11 tan(ϕν(x)θν(x))=Mν(x)θν(x)Mν(x)=2πxMν(x)Mν(x),
10.18.12 Mν(x)Nν(x)sin(ϕν(x)θν(x))=2πx.
10.18.13 x2Mν′′(x)+xMν(x)+(x2ν2)Mν(x)=4π2Mν3(x),
10.18.14 w′′+(1+14ν2x2)w=4π2w3,
10.18.15 x3w′′′+x(4x2+14ν2)w+(4ν21)w=0,
10.18.16 θν2(x)+12θν′′′(x)θν(x)34(θν′′(x)θν(x))2=1ν214x2.

§10.18(iii) Asymptotic Expansions for Large Argument

As x, with ν fixed and μ=4ν2,

10.18.17 Mν2(x) 2πx(1+12μ1(2x)2+1324(μ1)(μ9)(2x)4+135246(μ1)(μ9)(μ25)(2x)6+),
10.18.18 θν(x) x(12ν+14)π+μ12(4x)+(μ1)(μ25)6(4x)3+(μ1)(μ2114μ+1073)5(4x)5+(μ1)(5μ31535μ2+54703μ3 75733)14(4x)7+.


10.18.19 Nν2(x)2πx(112μ3(2x)2124(μ1)(μ45)(2x)4),

the general term in this expansion being

10.18.20 (2k3)!!(2k)!!(μ1)(μ9)(μ(2k3)2)(μ(2k+1)(2k1)2)(2x)2k,


10.18.21 ϕν(x)x(12ν14)π+μ+32(4x)+μ2+46μ636(4x)3+μ3+185μ22053μ+18995(4x)5+.

In (10.18.17) and (10.18.18) the remainder after n terms does not exceed the (n+1)th term in absolute value and is of the same sign, provided that n>ν12 for (10.18.17) and 32ν32 for (10.18.18).