About the Project

.世界杯预测神_『网址:687.vii』世界杯预选赛完整视频_b5p6v3_y0aqso2ym

AdvancedHelp

(0.002 seconds)

11—20 of 127 matching pages

11: 8.21 Generalized Sine and Cosine Integrals
§8.21(vii) Auxiliary Functions
8.21.18 f ( a , z ) = si ( a , z ) cos z ci ( a , z ) sin z ,
8.21.19 g ( a , z ) = si ( a , z ) sin z + ci ( a , z ) cos z .
8.21.22 f ( a , z ) = 0 sin t ( t + z ) 1 a d t ,
8.21.23 g ( a , z ) = 0 cos t ( t + z ) 1 a d t .
12: 18.30 Associated OP’s
For corresponding corecursive associated Jacobi polynomials, corecursive associated polynomials being discussed in §18.30(vii), see Letessier (1995). …
§18.30(vii) Corecursive and Associated Monic Orthogonal Polynomials
18.30.27 x p ^ n ( x ; c ) = p ^ n + 1 ( x ; c ) + α n + c p ^ n ( x ; c ) + β n + c p ^ n 1 ( x ; c ) , n = 1 , 2 , .
18.30.29 p ^ n ( 0 ) ( x ) = p ^ n 1 ( x ; 1 )
18.30.30 p ^ n ( k ) ( x ) = p ^ n 1 ( x ; k + 1 ) .
13: Bibliography I
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 14: 18.16 Zeros
    §18.16(vii) Discriminants
    18.16.19 Disc ( P n ( α , β ) ) = 2 n ( n 1 ) j = 1 n j j 2 n + 2 ( j + α ) j 1 ( j + β ) j 1 ( n + j + α + β ) n j .
    18.16.20 Disc ( L n ( α ) ) = j = 1 n j j 2 n + 2 ( j + α ) j 1 .
    18.16.21 Disc ( H n ) = 2 3 2 n ( n 1 ) j = 1 n j j .
    15: 1.10 Functions of a Complex Variable
    §1.10(vii) Inverse Functions
    1.10.12 f ( z ) = w
    1.10.13 F ( w ) = z 0 + n = 1 F n ( w w 0 ) n
    1.10.14 g ( F ( w ) ) = g ( z 0 ) + n = 1 G n ( w w 0 ) n ,
    1.10.16 F ( w ) = z 0 + n = 1 F n ( w w 0 ) n / μ
    16: Bibliography Q
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 17: 32.7 Bäcklund Transformations
    §32.7(vii) Sixth Painlevé Equation
    32.7.33 z 1 = 1 / z 0 ,
    32.7.34 z 2 = 1 z 0 ,
    32.7.35 z 3 = 1 / z 0 ,
    32.7.40 𝒮 2 : w 2 ( z 2 ) = 1 w 0 ( z 0 ) ,
    18: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 19: 8.17 Incomplete Beta Functions
    8.17.5 I x ( m , n m + 1 ) = j = m n ( n j ) x j ( 1 x ) n j , m , n positive integers; 0 x < 1 .
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
    20: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). …
    12.10.7 ξ = 1 2 t t 2 1 1 2 ln ( t + t 2 1 ) .
    12.10.23 η = 1 2 arccos t 1 2 t 1 t 2 ,
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .