About the Project

.%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BD%93%E5%BD%A9%E4%B8%B2%E4%B9%B0%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E9%99%AA%E7%9C%8B%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A5%B3%E5%AD%A9.m6q3s2-2022%E5%B9%B411%E6%9C%8829%E6%97%A57%E6%97%B60%E5%88%869%E7%A7%92.%E5%AD%97%E7%AC%A6%3Ewcamcs

AdvancedHelp

(0.058 seconds)

11—20 of 768 matching pages

11: 5.13 Integrals
β–Ί
5.13.4 d t Ξ“ ⁑ ( a + t ) ⁒ Ξ“ ⁑ ( b + t ) ⁒ Ξ“ ⁑ ( c t ) ⁒ Ξ“ ⁑ ( d t ) = Ξ“ ⁑ ( a + b + c + d 3 ) Ξ“ ⁑ ( a + c 1 ) ⁒ Ξ“ ⁑ ( a + d 1 ) ⁒ Ξ“ ⁑ ( b + c 1 ) ⁒ Ξ“ ⁑ ( b + d 1 ) , ⁑ ( a + b + c + d ) > 3 .
β–Ί
5.13.5 1 4 ⁒ Ο€ ⁒ k = 1 4 Ξ“ ⁑ ( a k + i ⁒ t ) ⁒ Ξ“ ⁑ ( a k i ⁒ t ) Ξ“ ⁑ ( 2 ⁒ i ⁒ t ) ⁒ Ξ“ ⁑ ( 2 ⁒ i ⁒ t ) ⁒ d t = 1 j < k 4 Ξ“ ⁑ ( a j + a k ) Ξ“ ⁑ ( a 1 + a 2 + a 3 + a 4 ) , ⁑ ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
12: 34.5 Basic Properties: 6 ⁒ j Symbol
β–Ί
34.5.1 { j 1 j 2 j 3 0 j 3 j 2 } = ( 1 ) J ( ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
β–Ί
34.5.2 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 + 1 2 } = ( 1 ) J ⁒ ( ( j 1 + j 3 j 2 ) ⁒ ( j 1 + j 2 j 3 + 1 ) ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 2 + 2 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
β–Ί
34.5.3 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 1 2 } = ( 1 ) J ⁒ ( ( j 2 + j 3 j 1 ) ⁒ ( j 1 + j 2 + j 3 + 1 ) 2 ⁒ j 2 ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
β–Ί
34.5.4 { j 1 j 2 j 3 1 j 3 1 j 2 1 } = ( 1 ) J ⁒ ( J ⁒ ( J + 1 ) ⁒ ( J 2 ⁒ j 1 ) ⁒ ( J 2 ⁒ j 1 1 ) ( 2 ⁒ j 2 1 ) ⁒ 2 ⁒ j 2 ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 3 1 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
β–ΊFor further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 98–99). …
13: 27.2 Functions
β–Ί
27.2.9 d ⁑ ( n ) = d | n 1
β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
Table 27.2.2: Functions related to division.
β–Ί β–Ίβ–Ίβ–Ί
n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
β–Ί
14: 7.14 Integrals
β–Ί
7.14.1 0 e 2 ⁒ i ⁒ a ⁒ t ⁒ erfc ⁑ ( b ⁒ t ) ⁒ d t = 1 a ⁒ Ο€ ⁒ F ⁑ ( a b ) + i 2 ⁒ a ⁒ ( 1 e ( a / b ) 2 ) , a β„‚ , | ph ⁑ b | < 1 4 ⁒ Ο€ .
β–Ί
7.14.5 0 e a ⁒ t ⁒ C ⁑ ( t ) ⁒ d t = 1 a ⁒ f ⁑ ( a Ο€ ) , ⁑ a > 0 ,
β–Ί
7.14.7 0 e a ⁒ t ⁒ C ⁑ ( 2 ⁒ t Ο€ ) ⁒ d t = ( a 2 + 1 + a ) 1 2 2 ⁒ a ⁒ a 2 + 1 , ⁑ a > 0 ,
β–ΊFor collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
15: Bibliography F
β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • β–Ί
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • β–Ί
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • β–Ί
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • 16: 9.8 Modulus and Phase
    β–ΊIn terms of Bessel functions, and with ΞΎ = 2 3 ⁒ | x | 3 / 2 , … β–Ί
    9.8.20 M 2 ⁑ ( x ) 1 Ο€ ⁒ ( x ) 1 / 2 ⁒ k = 0 1 3 5 ⁒ β‹― ⁒ ( 6 ⁒ k 1 ) k ! ⁒ ( 96 ) k ⁒ 1 x 3 ⁒ k ,
    β–Ί
    9.8.21 N 2 ⁑ ( x ) ( x ) 1 / 2 Ο€ ⁒ k = 0 1 3 5 ⁒ β‹― ⁒ ( 6 ⁒ k 1 ) k ! ⁒ ( 96 ) k ⁒ 1 + 6 ⁒ k 1 6 ⁒ k ⁒ 1 x 3 ⁒ k ,
    β–Ί
    9.8.22 ΞΈ ⁑ ( x ) Ο€ 4 + 2 3 ⁒ ( x ) 3 / 2 ⁒ ( 1 + 5 32 ⁒ 1 x 3 + 1105 6144 ⁒ 1 x 6 + 82825 65536 ⁒ 1 x 9 + 12820 31525 587 20256 ⁒ 1 x 12 + β‹― ) ,
    β–Ί
    9.8.23 Ο• ⁑ ( x ) Ο€ 4 + 2 3 ⁒ ( x ) 3 / 2 ⁒ ( 1 7 32 ⁒ 1 x 3 1463 6144 ⁒ 1 x 6 4 95271 3 27680 ⁒ 1 x 9 2065 30429 83 88608 ⁒ 1 x 12 β‹― ) .
    17: Bibliography B
    β–Ί
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • β–Ί
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • β–Ί
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • β–Ί
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • β–Ί
  • J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001) Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31 (1-2), pp. 89–96.
  • 18: 4.40 Integrals
    β–ΊExtensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
    19: 9.9 Zeros
    β–ΊThey lie in the sectors 1 3 ⁒ Ο€ < ph ⁑ z < 1 2 ⁒ Ο€ and 1 2 ⁒ Ο€ < ph ⁑ z < 1 3 ⁒ Ο€ , and are denoted by Ξ² k , Ξ² k , respectively, in the former sector, and by Ξ² k ¯ , Ξ² k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. … β–Ί
    9.9.6 a k = T ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 1 ) ) ,
    β–Ί
    9.9.7 Ai ⁑ ( a k ) = ( 1 ) k 1 ⁒ V ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 1 ) ) ,
    β–Ί
    9.9.10 b k = T ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 3 ) ) ,
    β–Ί
    9.9.21 W ⁑ ( t ) Ο€ 1 / 2 ⁒ t 1 / 6 ⁒ ( 1 7 96 ⁒ t 2 + 1673 6144 ⁒ t 4 843 94709 265 42080 ⁒ t 6 + 78 02771 35421 1 01921 58720 ⁒ t 8 20444 90510 51945 6 52298 15808 ⁒ t 10 + β‹― ) .
    20: Bibliography J
    β–Ί
  • L. Jager (1998) Fonctions de Mathieu et fonctions propres de l’oscillateur relativiste. Ann. Fac. Sci. Toulouse Math. (6) 7 (3), pp. 465–495 (French).
  • β–Ί
  • S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel (1993) The birth of the giant component. Random Structures Algorithms 4 (3), pp. 231–358.
  • β–Ί
  • U. D. Jentschura and E. Lötstedt (2012) Numerical calculation of Bessel, Hankel and Airy functions. Computer Physics Communications 183 (3), pp. 506–519.
  • β–Ί
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • β–Ί
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).