About the Project

%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%97%B6%E6%97%B6%E5%BD%A9%E7%8E%A9%E6%B3%95,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E6%8A%80%E5%B7%A7,%E6%97%B6%E6%97%B6%E5%BD%A9%E8%A7%84%E5%88%99,%E3%80%90%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B622kk55.com%E3%80%91%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%A8%E8%8D%90,%E6%97%B6%E6%97%B6%E5%BD%A9%E5%AE%98%E7%BD%91,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E7%AB%99,%E9%87%8D%E5%BA%86%E6%97%B6%E6%97%B6%E5%BD%A9%E8%A7%84%E5%88%99,%E6%97%B6%E6%97%B6%E5%BD%A9%E5%BC%80%E5%A5%96%E7%BB%93%E6%9E%9C,%E6%97%B6%E6%97%B6%E5%BD%A9app%E4%B8%8B%E8%BD%BD,%E3%80%90%E6%97%B6%E6%97%B6%E5%BD%A9%E5%B9%B3%E5%8F%B0%E2%88%B622kk55.com%E3%80%91

AdvancedHelp

(0.036 seconds)

21—30 of 622 matching pages

21: 34.5 Basic Properties: 6 ⁒ j Symbol
β–Ί
34.5.11 ( 2 ⁒ j 1 + 1 ) ⁒ ( ( J 3 + J 2 J 1 ) ⁒ ( L 3 + L 2 J 1 ) 2 ⁒ ( J 3 ⁒ L 3 + J 2 ⁒ L 2 J 1 ⁒ L 1 ) ) ⁒ { j 1 j 2 j 3 l 1 l 2 l 3 } = j 1 ⁒ E ⁑ ( j 1 + 1 ) ⁒ { j 1 + 1 j 2 j 3 l 1 l 2 l 3 } + ( j 1 + 1 ) ⁒ E ⁑ ( j 1 ) ⁒ { j 1 1 j 2 j 3 l 1 l 2 l 3 } ,
β–Ί
34.5.13 E ⁑ ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ⁒ ( ( j 2 + j 3 + 1 ) 2 j 2 ) ⁒ ( j 2 ( l 2 l 3 ) 2 ) ⁒ ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
β–ΊFor further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 9899). …
22: 13.10 Integrals
β–Ί
13.10.3 0 e z ⁒ t ⁒ t b 1 ⁒ 𝐌 ⁑ ( a , c , k ⁒ t ) ⁒ d t = Ξ“ ⁑ ( b ) ⁒ z b ⁒ 𝐅 1 2 ⁑ ( a , b ; c ; k / z ) , ⁑ b > 0 , ⁑ z > max ⁑ ( ⁑ k , 0 ) ,
β–Ί
13.10.7 0 e z ⁒ t ⁒ t b 1 ⁒ U ⁑ ( a , c , t ) ⁒ d t = Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( b c + 1 ) ⁒ z b ⁒ 𝐅 1 2 ⁑ ( a , b ; a + b c + 1 ; 1 1 z ) , ⁑ b > max ⁑ ( ⁑ c 1 , 0 ) , ⁑ z > 0 .
β–ΊFor additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §§1.16 and 3.4.42–46, 4.4.45–47, 5.94–97). …
23: 25.5 Integral Representations
β–Ί
25.5.7 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ ( s ) 2 ⁒ m 1 + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ x 2 ⁒ m 1 ) ⁒ x s 1 e x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , n = 1 , 2 , 3 , .
β–Ί
25.5.10 ΞΆ ⁑ ( s ) = 2 s 1 1 2 1 s ⁒ 0 cos ⁑ ( s ⁒ arctan ⁑ x ) ( 1 + x 2 ) s / 2 ⁒ cosh ⁑ ( 1 2 ⁒ Ο€ ⁒ x ) ⁒ d x .
β–Ί
25.5.11 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + 2 ⁒ 0 sin ⁑ ( s ⁒ arctan ⁑ x ) ( 1 + x 2 ) s / 2 ⁒ ( e 2 ⁒ Ο€ ⁒ x 1 ) ⁒ d x .
β–Ί
25.5.12 ΞΆ ⁑ ( s ) = 2 s 1 s 1 2 s ⁒ 0 sin ⁑ ( s ⁒ arctan ⁑ x ) ( 1 + x 2 ) s / 2 ⁒ ( e Ο€ ⁒ x + 1 ) ⁒ d x .
24: 13.23 Integrals
β–Ί
13.23.1 0 e z ⁒ t ⁒ t Ξ½ 1 ⁒ M ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( ΞΌ + Ξ½ + 1 2 ) ( z + 1 2 ) ΞΌ + Ξ½ + 1 2 ⁒ F 1 2 ⁑ ( 1 2 + ΞΌ ΞΊ , 1 2 + ΞΌ + Ξ½ 1 + 2 ⁒ ΞΌ ; 1 z + 1 2 ) , ⁑ ΞΌ + Ξ½ + 1 2 > 0 , ⁑ z > 1 2 .
β–Ί
13.23.4 0 e z ⁒ t ⁒ t Ξ½ 1 ⁒ W ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( 1 2 + ΞΌ + Ξ½ ) ⁒ Ξ“ ⁑ ( 1 2 ΞΌ + Ξ½ ) ⁒ 𝐅 1 2 ⁑ ( 1 2 ΞΌ + Ξ½ , 1 2 + ΞΌ + Ξ½ Ξ½ ΞΊ + 1 ; 1 2 z ) , ⁑ ( Ξ½ + 1 2 ) > | ⁑ ΞΌ | , ⁑ z > 1 2 ,
β–ΊFor additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §1.16 and 3.4.42–46, 4.4.45–47, 5.94–97). …
25: 1.9 Calculus of a Complex Variable
β–ΊAny point whose neighborhoods always contain members and nonmembers of D is a boundary point of D . … β–ΊA function f ⁑ ( z ) is analytic in a domain D if it is analytic at each point of D . … β–Ίat all points of D . … β–ΊSuppose f ⁑ ( z ) is analytic in a domain D and C 1 , C 2 are two arcs in D passing through z 0 . … β–Ίfor any finite contour C in D . …
26: 12.14 The Function W ⁑ ( a , x )
β–ΊFor the modulus functions F ~ ⁑ ( a , x ) and G ~ ⁑ ( a , x ) see §12.14(x). … β–ΊOther expansions, involving cos ⁑ ( 1 4 ⁒ x 2 ) and sin ⁑ ( 1 4 ⁒ x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i ⁒ a and z by x ⁒ e Ο€ ⁒ i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). … β–Ίwhere k is defined in (12.14.5), and F ~ ⁑ ( a , x ) ( > 0), ΞΈ ~ ⁑ ( a , x ) , G ~ ⁑ ( a , x ) ( > 0), and ψ ~ ⁑ ( a , x ) are real. F ~ or G ~ is the modulus and ΞΈ ~ or ψ ~ is the corresponding phase. … β–ΊFor properties of the modulus and phase functions, including differential equations and asymptotic expansions for large x , see Miller (1955, pp. 8788). …
27: Bibliography O
β–Ί
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 8795.
  • β–Ί
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • β–Ί
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • β–Ί
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • β–Ί
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 28: 26.6 Other Lattice Path Numbers
    β–Ί
    Delannoy Number D ⁑ ( m , n )
    β–Ί D ⁑ ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . … β–Ί
    Table 26.6.1: Delannoy numbers D ⁑ ( m , n ) .
    β–Ί β–Ίβ–Ί
    m n
    β–Ί
    β–Ί
    26.6.4 r ⁑ ( n ) = D ⁑ ( n , n ) D ⁑ ( n + 1 , n 1 ) , n 1 .
    β–Ί
    26.6.10 D ⁑ ( m , n ) = D ⁑ ( m , n 1 ) + D ⁑ ( m 1 , n ) + D ⁑ ( m 1 , n 1 ) , m , n 1 ,
    29: 10.22 Integrals
    β–ΊIn this subsection π’ž Ξ½ ⁑ ( z ) and π’Ÿ ΞΌ ⁑ ( z ) denote cylinder functions(§10.2(ii)) of orders Ξ½ and ΞΌ , respectively, not necessarily distinct. … β–ΊFor the hypergeometric function 𝐅 see §15.2(i). … β–ΊSufficient conditions for the validity of (10.22.77) are that 0 | f ⁑ ( x ) | ⁒ d x < when Ξ½ 1 2 , or that 0 | f ⁑ ( x ) | ⁒ d x < and 0 1 x Ξ½ + 1 2 ⁒ | f ⁑ ( x ) | ⁒ d x < when 1 < Ξ½ < 1 2 ; see Titchmarsh (1986a, Theorem 135, Chapter 8) and Akhiezer (1988, p. 62). … β–ΊFor collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972). … β–ΊSufficient conditions for the validity of (10.22.79) are that 0 | f ⁑ ( x ) | ⁒ d x < when 0 < Ξ½ 1 2 , or that 0 | f ⁑ ( x ) | ⁒ d x < and 0 1 x 1 2 Ξ½ ⁒ | f ⁑ ( x ) | ⁒ d x < when 1 2 < Ξ½ < 1 ; see Titchmarsh (1962a, pp. 8890). …
    30: Bibliography U
    β–Ί
  • J. Urbanowicz (1988) On the equation f ⁒ ( 1 ) ⁒ 1 k + f ⁒ ( 2 ) ⁒ 2 k + β‹― + f ⁒ ( x ) ⁒ x k + R ⁒ ( x ) = B ⁒ y 2 . Acta Arith. 51 (4), pp. 349–368.
  • β–Ί
  • F. Ursell (1960) On Kelvin’s ship-wave pattern. J. Fluid Mech. 8 (3), pp. 418–431.
  • β–Ί
  • F. Ursell (1980) Integrals with a large parameter: A double complex integral with four nearly coincident saddle-points. Math. Proc. Cambridge Philos. Soc. 87 (2), pp. 249–273.
  • β–Ί
  • F. Ursell (1984) Integrals with a large parameter: Legendre functions of large degree and fixed order. Math. Proc. Cambridge Philos. Soc. 95 (2), pp. 367–380.