About the Project

stable pairs

AdvancedHelp

(0.002 seconds)

1—10 of 95 matching pages

1: 28.17 Stability as x ±
§28.17 Stability as x ±
If all solutions of (28.2.1) are bounded when x ± along the real axis, then the corresponding pair of parameters ( a , q ) is called stable. All other pairs are unstable. For example, positive real values of a with q = 0 comprise stable pairs, as do values of a and q that correspond to real, but noninteger, values of ν . … For real a and q ( 0 ) the stable regions are the open regions indicated in color in Figure 28.17.1. …
2: 15.19 Methods of Computation
This is because the linear transformations map the pair { e π i / 3 , e π i / 3 } onto itself. … The relations in §15.5(ii) can be used to compute F ( a , b ; c ; z ) , provided that care is taken to apply these relations in a stable manner; see §3.6(ii). …
3: 28.33 Physical Applications
  • Boundary-values problems arising from solution of the two-dimensional wave equation in elliptical coordinates. This yields a pair of equations of the form (28.2.1) and (28.20.1), and the appropriate solution of (28.2.1) is usually a periodic solution of integer order. See §28.33(ii).

  • Hence from §28.17 the corresponding Mathieu equation is stable or unstable according as ( q , a ) is in the intersection of with the colored or the uncolored open regions depicted in Figure 28.17.1. In particular, the equation is stable for all sufficiently large values of ω . …
    4: 17.12 Bailey Pairs
    §17.12 Bailey Pairs
    Bailey Pairs
    When (17.12.5) is iterated the resulting infinite sequence of Bailey pairs is called a Bailey Chain. … The Bailey pair that implies the Rogers–Ramanujan identities §17.2(vi) is: … The Bailey pair and Bailey chain concepts have been extended considerably. …
    5: 14.32 Methods of Computation
    In particular, for small or moderate values of the parameters μ and ν the power-series expansions of the various hypergeometric function representations given in §§14.3(i)14.3(iii), 14.19(ii), and 14.20(i) can be selected in such a way that convergence is stable, and reasonably rapid, especially when the argument of the functions is real. In other cases recurrence relations (§14.10) provide a powerful method when applied in a stable direction (§3.6); see Olver and Smith (1983) and Gautschi (1967). …
    6: 29.9 Stability
    The Lamé equation (29.2.1) with specified values of k , h , ν is called stable if all of its solutions are bounded on ; otherwise the equation is called unstable. …
    7: 33.23 Methods of Computation
    When numerical values of the Coulomb functions are available for some radii, their values for other radii may be obtained by direct numerical integration of equations (33.2.1) or (33.14.1), provided that the integration is carried out in a stable direction (§3.7). … In a similar manner to §33.23(iii) the recurrence relations of §§33.4 or 33.17 can be used for a range of values of the integer , provided that the recurrence is carried out in a stable direction (§3.6). …
    8: 1.11 Zeros of Polynomials
    §1.11 Zeros of Polynomials
    §1.11(v) Stable Polynomials
    with real coefficients, is called stable if the real parts of all the zeros are strictly negative.
    Hurwitz Criterion
    Then f ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 k > 0 , k = 1 , , 1 2 n ; sign D 2 k + 1 = sign a 0 , k = 0 , 1 , , 1 2 n 1 2 .
    9: 36.14 Other Physical Applications
    These are the structurally stable focal singularities (envelopes) of families of rays, on which the intensities of the geometrical (ray) theory diverge. …
    10: 24.19 Methods of Computation
    For number-theoretic applications it is important to compute B 2 n ( mod p ) for 2 n p 3 ; in particular to find the irregular pairs ( 2 n , p ) for which B 2 n 0 ( mod p ) . We list here three methods, arranged in increasing order of efficiency. …
  • A method related to “Stickelberger codes” is applied in Buhler et al. (2001); in particular, it allows for an efficient search for the irregular pairs ( 2 n , p ) . Discrete Fourier transforms are used in the computations. See also Crandall (1996, pp. 120–124).