About the Project

shifted

AdvancedHelp

(0.000 seconds)

11—20 of 151 matching pages

11: 17.2 Calculus
â–șFor n = 0 , 1 , 2 , , â–ș
17.2.1 ( a ; q ) n = ( 1 a ) ⁱ ( 1 a ⁱ q ) ⁱ ⋯ ⁱ ( 1 a ⁱ q n 1 ) ,
â–ș
17.2.3 ( a ; q ) Îœ = j = 0 ( 1 a ⁹ q j 1 a ⁹ q Îœ + j ) ,
â–ș
17.2.4 ( a ; q ) = j = 0 ( 1 a ⁹ q j ) ,
â–ș
17.2.7 ( a ; q 1 ) n = ( a 1 ; q ) n ⁹ ( a ) n ⁹ q ( n 2 ) ,
12: 33.2 Definitions and Basic Properties
â–ș
33.2.9 Ξ ℓ ⁥ ( η , ρ ) = ρ η ⁹ ln ⁥ ( 2 ⁹ ρ ) 1 2 ⁹ ℓ ⁹ π + σ ℓ ⁥ ( η ) ,
â–ș
33.2.10 σ ℓ ⁥ ( η ) = ph ⁥ Γ ⁥ ( ℓ + 1 + i ⁹ η ) ,
â–ș σ ℓ ⁥ ( η ) is the Coulomb phase shift. … â–șAlso, e ∓ i ⁹ σ ℓ ⁥ ( η ) ⁹ H ℓ ± ⁥ ( η , ρ ) are analytic functions of η when < η < . …
13: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
â–ș
17.5.1 ϕ 0 0 ⁥ ( ; ; q , z ) = n = 0 ( 1 ) n ⁹ q ( n 2 ) ⁹ z n ( q ; q ) n = ( z ; q ) ;
â–ș â–ș â–ș â–ș
17.5.5 ϕ 1 1 ⁥ ( a c ; q , c / a ) = ( c / a ; q ) ( c ; q ) .
14: 17.3 q -Elementary and q -Special Functions
â–ș
17.3.1 e q ⁥ ( x ) = n = 0 ( 1 q ) n ⁹ x n ( q ; q ) n = 1 ( ( 1 q ) ⁹ x ; q ) ,
â–ș
17.3.2 E q ⁥ ( x ) = n = 0 ( 1 q ) n ⁹ q ( n 2 ) ⁹ x n ( q ; q ) n = ( ( 1 q ) ⁹ x ; q ) .
â–ș
17.3.3 sin q ⁥ ( x ) = 1 2 ⁹ i ⁹ ( e q ⁥ ( i ⁹ x ) e q ⁥ ( i ⁹ x ) ) = n = 0 ( 1 q ) 2 ⁹ n + 1 ⁹ ( 1 ) n ⁹ x 2 ⁹ n + 1 ( q ; q ) 2 ⁹ n + 1 ,
â–ș
17.3.4 Sin q ⁥ ( x ) = 1 2 ⁹ i ⁹ ( E q ⁥ ( i ⁹ x ) E q ⁥ ( i ⁹ x ) ) = n = 0 ( 1 q ) 2 ⁹ n + 1 ⁹ q n ⁹ ( 2 ⁹ n + 1 ) ⁹ ( 1 ) n ⁹ x 2 ⁹ n + 1 ( q ; q ) 2 ⁹ n + 1 .
â–ș
17.3.5 cos q ⁥ ( x ) = 1 2 ⁹ ( e q ⁥ ( i ⁹ x ) + e q ⁥ ( i ⁹ x ) ) = n = 0 ( 1 q ) 2 ⁹ n ⁹ ( 1 ) n ⁹ x 2 ⁹ n ( q ; q ) 2 ⁹ n ,
15: 18.7 Interrelations and Limit Relations
â–ș
18.7.1 C n ( λ ) ⁥ ( x ) = ( 2 ⁹ λ ) n ( λ + 1 2 ) n ⁹ P n ( λ 1 2 , λ 1 2 ) ⁥ ( x ) ,
â–ș
18.7.2 P n ( α , α ) ⁥ ( x ) = ( α + 1 ) n ( 2 ⁹ α + 1 ) n ⁹ C n ( α + 1 2 ) ⁥ ( x ) .
â–ș
18.7.7 T n ⁥ ( x ) = T n ⁥ ( 2 ⁹ x 1 ) ,
â–ș
18.7.8 U n ⁥ ( x ) = U n ⁥ ( 2 ⁹ x 1 ) .
â–ș
18.7.10 P n ⁥ ( x ) = P n ⁥ ( 2 ⁹ x 1 ) .
16: 12.9 Asymptotic Expansions for Large Variable
â–ș
12.9.1 U ⁥ ( a , z ) e 1 4 ⁹ z 2 ⁹ z a 1 2 ⁹ s = 0 ( 1 ) s ⁹ ( 1 2 + a ) 2 ⁹ s s ! ⁹ ( 2 ⁹ z 2 ) s , | ph ⁥ z | 3 4 ⁹ π ÎŽ ( < 3 4 ⁹ π ) ,
â–ș
12.9.2 V ⁥ ( a , z ) 2 π ⁹ e 1 4 ⁹ z 2 ⁹ z a 1 2 ⁹ s = 0 ( 1 2 a ) 2 ⁹ s s ! ⁹ ( 2 ⁹ z 2 ) s , | ph ⁥ z | 1 4 ⁹ π ÎŽ ( < 1 4 ⁹ π ) .
â–ș
12.9.3 U ⁥ ( a , z ) e 1 4 ⁹ z 2 ⁹ z a 1 2 ⁹ s = 0 ( 1 ) s ⁹ ( 1 2 + a ) 2 ⁹ s s ! ⁹ ( 2 ⁹ z 2 ) s ± i ⁹ 2 ⁹ π Γ ⁥ ( 1 2 + a ) ⁹ e ∓ i ⁹ π ⁹ a ⁹ e 1 4 ⁹ z 2 ⁹ z a 1 2 ⁹ s = 0 ( 1 2 a ) 2 ⁹ s s ! ⁹ ( 2 ⁹ z 2 ) s , 1 4 ⁹ π + ÎŽ ± ph ⁥ z 5 4 ⁹ π ÎŽ ,
â–ș
12.9.4 V ⁥ ( a , z ) 2 π ⁹ e 1 4 ⁹ z 2 ⁹ z a 1 2 ⁹ s = 0 ( 1 2 a ) 2 ⁹ s s ! ⁹ ( 2 ⁹ z 2 ) s ± i Γ ⁥ ( 1 2 a ) ⁹ e 1 4 ⁹ z 2 ⁹ z a 1 2 ⁹ s = 0 ( 1 ) s ⁹ ( 1 2 + a ) 2 ⁹ s s ! ⁹ ( 2 ⁹ z 2 ) s , 1 4 ⁹ π + ÎŽ ± ph ⁥ z 3 4 ⁹ π ÎŽ .
17: 13.13 Addition and Multiplication Theorems
â–ș â–ș
13.13.2 ( x + y x ) 1 b ⁹ n = 0 ( 1 b ) n ⁹ ( y / x ) n n ! ⁹ M ⁥ ( a , b n , x ) , | y | < | x | ,
â–ș
13.13.3 ( x x + y ) a ⁹ n = 0 ( a ) n ⁹ y n n ! ⁹ ( x + y ) n ⁹ M ⁥ ( a + n , b , x ) , ⁥ ( y / x ) > 1 2 ,
â–ș â–ș
13.13.5 e y ⁹ ( x x + y ) b a ⁹ n = 0 ( b a ) n ⁹ y n n ! ⁹ ( x + y ) n ⁹ M ⁥ ( a n , b , x ) , ⁥ ( ( y + x ) / x ) > 1 2 ,
18: 13.26 Addition and Multiplication Theorems
â–ș
13.26.1 e 1 2 ⁹ y ⁹ ( x x + y ) ÎŒ 1 2 ⁹ n = 0 ( 2 ⁹ ÎŒ ) n n ! ⁹ ( y x ) n ⁹ M Îș 1 2 ⁹ n , ÎŒ 1 2 ⁹ n ⁥ ( x ) , | y | < | x | ,
â–ș
13.26.2 e 1 2 ⁹ y ⁹ ( x + y x ) ÎŒ + 1 2 ⁹ n = 0 ( 1 2 + ÎŒ Îș ) n ( 1 + 2 ⁹ ÎŒ ) n ⁹ n ! ⁹ ( y x ) n ⁹ M Îș 1 2 ⁹ n , ÎŒ + 1 2 ⁹ n ⁥ ( x ) ,
â–ș
13.26.3 e 1 2 ⁹ y ⁹ ( x + y x ) Îș ⁹ n = 0 ( 1 2 + ÎŒ Îș ) n ⁹ y n n ! ⁹ ( x + y ) n ⁹ M Îș n , ÎŒ ⁥ ( x ) , ⁥ ( y / x ) > 1 2 ,
â–ș
13.26.5 e 1 2 ⁹ y ⁹ ( x + y x ) ÎŒ + 1 2 ⁹ n = 0 ( 1 2 + ÎŒ + Îș ) n ( 1 + 2 ⁹ ÎŒ ) n ⁹ n ! ⁹ ( y x ) n ⁹ M Îș + 1 2 ⁹ n , ÎŒ + 1 2 ⁹ n ⁥ ( x ) ,
â–ș
13.26.6 e 1 2 ⁹ y ⁹ ( x x + y ) Îș ⁹ n = 0 ( 1 2 + ÎŒ + Îș ) n ⁹ y n n ! ⁹ ( x + y ) n ⁹ M Îș + n , ÎŒ ⁥ ( x ) , ⁥ ( ( y + x ) / x ) > 1 2 .
19: 15.15 Sums
â–ș
15.15.1 𝐅 ⁡ ( a , b c ; 1 z ) = ( 1 z 0 z ) a ⁱ s = 0 ( a ) s s ! ⁱ 𝐅 ⁡ ( s , b c ; 1 z 0 ) ⁱ ( 1 z z 0 ) s .
20: 16.13 Appell Functions
â–ș
16.13.1 F 1 ⁥ ( α ; ÎČ , ÎČ ; Îł ; x , y ) = m , n = 0 ( α ) m + n ⁹ ( ÎČ ) m ⁹ ( ÎČ ) n ( Îł ) m + n ⁹ m ! ⁹ n ! ⁹ x m ⁹ y n , max ⁥ ( | x | , | y | ) < 1 ,
â–ș
16.13.2 F 2 ⁥ ( α ; ÎČ , ÎČ ; Îł , Îł ; x , y ) = m , n = 0 ( α ) m + n ⁹ ( ÎČ ) m ⁹ ( ÎČ ) n ( Îł ) m ⁹ ( Îł ) n ⁹ m ! ⁹ n ! ⁹ x m ⁹ y n , | x | + | y | < 1 ,
â–ș
16.13.3 F 3 ⁥ ( α , α ; ÎČ , ÎČ ; Îł ; x , y ) = m , n = 0 ( α ) m ⁹ ( α ) n ⁹ ( ÎČ ) m ⁹ ( ÎČ ) n ( Îł ) m + n ⁹ m ! ⁹ n ! ⁹ x m ⁹ y n , max ⁥ ( | x | , | y | ) < 1 ,
â–ș
16.13.4 F 4 ⁥ ( α , ÎČ ; Îł , Îł ; x , y ) = m , n = 0 ( α ) m + n ⁹ ( ÎČ ) m + n ( Îł ) m ⁹ ( Îł ) n ⁹ m ! ⁹ n ! ⁹ x m ⁹ y n , | x | + | y | < 1 .