About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.7 Interrelations and Limit Relations

Contents
  1. §18.7(i) Linear Transformations
  2. §18.7(ii) Quadratic Transformations
  3. §18.7(iii) Limit Relations

§18.7(i) Linear Transformations

Ultraspherical and Jacobi

18.7.1 Cn(λ)(x) =(2λ)n(λ+12)nPn(λ12,λ12)(x),
18.7.2 Pn(α,α)(x) =(α+1)n(2α+1)nCn(α+12)(x).

Chebyshev, Ultraspherical, and Jacobi

18.7.3 Tn(x)=Pn(12,12)(x)/Pn(12,12)(1),
18.7.4 Un(x)=Cn(1)(x)=(n+1)Pn(12,12)(x)/Pn(12,12)(1),
18.7.5 Vn(x)=Pn(12,12)(x)/Pn(12,12)(1),
18.7.6 Wn(x)=(2n+1)Pn(12,12)(x)/Pn(12,12)(1).
18.7.7 Tn(x) =Tn(2x1),
18.7.8 Un(x) =Un(2x1).

See also (18.9.9)–(18.9.12). For (18.7.3) see also (18.7.25).

Legendre, Ultraspherical, and Jacobi

18.7.9 Pn(x)=Cn(12)(x)=Pn(0,0)(x).
18.7.10 Pn(x)=Pn(2x1).

Hermite

18.7.11 𝐻𝑒n(x) =212nHn(212x),
18.7.12 Hn(x) =212n𝐻𝑒n(212x).

§18.7(ii) Quadratic Transformations

18.7.13 P2n(α,α)(x)P2n(α,α)(1) =Pn(α,12)(2x21)Pn(α,12)(1),
18.7.14 P2n+1(α,α)(x)P2n+1(α,α)(1) =xPn(α,12)(2x21)Pn(α,12)(1).
18.7.15 C2n(λ)(x) =(λ)n(12)nPn(λ12,12)(2x21),
18.7.16 C2n+1(λ)(x) =(λ)n+1(12)n+1xPn(λ12,12)(2x21).
18.7.17 U2n(x) =Wn(2x21),
18.7.18 T2n+1(x) =xVn(2x21).
18.7.19 H2n(x) =(1)n22nn!Ln(12)(x2),
18.7.20 H2n+1(x) =(1)n22n+1n!xLn(12)(x2).

Equations (18.7.13)–(18.7.20) are special cases of (18.2.22)–(18.2.23).

§18.7(iii) Limit Relations

Jacobi Laguerre

18.7.21 limβPn(α,β)(1(2x/β))=Ln(α)(x).
18.7.22 limαPn(α,β)((2x/α)1)=(1)nLn(β)(x).

Jacobi Hermite

18.7.23 limαα12nPn(α,α)(α12x)=Hn(x)2nn!.

Ultraspherical Hermite

18.7.24 limλλ12nCn(λ)(λ12x)=Hn(x)n!.

Ultraspherical Chebyshev

18.7.25 limλ0n+λλCn(λ)(x)={1,n=0,2Tn(x),n=1,2,.

Laguerre Hermite

18.7.26 limα(2α)12nLn(α)((2α)12x+α)=(1)nn!Hn(x).

See Figure 18.21.1 for the Askey schematic representation of most of these limits. See §18.11(ii) for limit formulas of Mehler–Heine type.