About the Project

pseudo spectral methods

AdvancedHelp

(0.002 seconds)

11—20 of 161 matching pages

11: 17.18 Methods of Computation
§17.18 Methods of Computation
Method (2) is very powerful when applicable (Andrews (1976, Chapter 5)); however, it is applicable only rarely. Lehner (1941) uses Method (2) in connection with the Rogers–Ramanujan identities. Method (1) can sometimes be improved by application of convergence acceleration procedures; see §3.9. Shanks (1955) applies such methods in several q -series problems; see Andrews et al. (1986).
12: Bibliography E
  • ECMNET Project (website)
  • E. Elizalde (1995) Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics. New Series m: Monographs, Vol. 35, Springer-Verlag, Berlin.
  • G. A. Evans and J. R. Webster (1999) A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112 (1-2), pp. 55–69.
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • 13: Bibliography G
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • J. S. Geronimo, O. Bruno, and W. Van Assche (2004) WKB and turning point theory for second-order difference equations. In Spectral Methods for Operators of Mathematical Physics, Oper. Theory Adv. Appl., Vol. 154, pp. 101–138.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • D. Gottlieb and S. A. Orszag (1977) Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • B. Guo (1998) Spectral Methods and Their Applications. World Scientific Publishing Co. Inc., River Edge, NJ-Singapore.
  • 14: 31.8 Solutions via Quadratures
    ϵ = m 3 + 1 2 , m 0 , m 1 , m 2 , m 3 = 0 , 1 , 2 , ,
    the Hermite–Darboux method (see Whittaker and Watson (1927, pp. 570–572)) can be applied to construct solutions of (31.2.1) expressed in quadratures, as follows. … The variables λ and ν are two coordinates of the associated hyperelliptic (spectral) curve Γ : ν 2 = j = 1 2 g + 1 ( λ λ j ) . …
    15: Bibliography L
  • J. C. Lagarias, V. S. Miller, and A. M. Odlyzko (1985) Computing π ( x ) : The Meissel-Lehmer method. Math. Comp. 44 (170), pp. 537–560.
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • B. M. Levitan and I. S. Sargsjan (1975) Introduction to spectral theory: selfadjoint ordinary differential operators. Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I..
  • C. Liaw, L. L. Littlejohn, R. Milson, and J. Stewart (2016) The spectral analysis of three families of exceptional Laguerre polynomials. J. Approx. Theory 202, pp. 5–41.
  • R. J. Lyman and W. W. Edmonson (2001) Linear prediction of bandlimited processes with flat spectral densities. IEEE Trans. Signal Process. 49 (7), pp. 1564–1569.
  • 16: Bibliography S
  • J. Segura (1998) A global Newton method for the zeros of cylinder functions. Numer. Algorithms 18 (3-4), pp. 259–276.
  • B. Shizgal (2015) Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and Quantum Mechanics. Scientific Computation, Springer-Verlag, Dordrecht.
  • B. Simon (2005b) Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2011) Szegő’s Theorem and Its Descendants. Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M. B. Porter Lectures, Princeton University Press, Princeton, NJ.
  • B. D. Sleeman (1978) Multiparameter spectral theory in Hilbert space. Research Notes in Mathematics, Vol. 22, Pitman (Advanced Publishing Program), Boston, Mass.-London.
  • 17: 12.18 Methods of Computation
    §12.18 Methods of Computation
    Because PCFs are special cases of confluent hypergeometric functions, the methods of computation described in §13.29 are applicable to PCFs. …
    18: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 19: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • J. P. Keating (1999) Periodic Orbits, Spectral Statistics, and the Riemann Zeros. In Supersymmetry and Trace Formulae: Chaos and Disorder, J. P. Keating, D. E. Khmelnitskii, and I. V. Lerner (Eds.), pp. 1–15.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • M. K. Kerimov (1999) The Rayleigh function: Theory and computational methods. Zh. Vychisl. Mat. Mat. Fiz. 39 (12), pp. 1962–2006.
  • A. D. Kerr (1978) An indirect method for evaluating certain infinite integrals. Z. Angew. Math. Phys. 29 (3), pp. 380–386.
  • 20: 34.13 Methods of Computation
    §34.13 Methods of Computation
    Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). A review of methods of computation is given in Srinivasa Rao and Rajeswari (1993, Chapter VII, pp. 235–265). …