About the Project

pi

AdvancedHelp

(0.001 seconds)

1—10 of 480 matching pages

1: 4.22 Infinite Products and Partial Fractions
4.22.1 sin z = z n = 1 ( 1 z 2 n 2 π 2 ) ,
4.22.2 cos z = n = 1 ( 1 4 z 2 ( 2 n 1 ) 2 π 2 ) .
When z n π , n ,
4.22.3 cot z = 1 z + 2 z n = 1 1 z 2 n 2 π 2 ,
4.22.4 csc 2 z = n = 1 ( z n π ) 2 ,
2: 4.36 Infinite Products and Partial Fractions
4.36.1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) ,
4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
When z n π i , n ,
4.36.3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 ,
4.36.4 csch 2 z = n = 1 ( z n π i ) 2 ,
3: 6.15 Sums
6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
4: 28.3 Graphics
Even π -Periodic Solutions
See accompanying text
Figure 28.3.1: ce 2 n ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
Even π -Antiperiodic Solutions
Odd π -Antiperiodic Solutions
Odd π -Periodic Solutions
5: 24.7 Integral Representations
24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
24.7.7 B 2 n ( x ) = ( 1 ) n + 1 2 n 0 cos ( 2 π x ) e 2 π t cosh ( 2 π t ) cos ( 2 π x ) t 2 n 1 d t , n = 1 , 2 , ,
24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .
6: 9.1 Special Notation
Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
7: 28.29 Definitions and Basic Properties
π is the minimum period of Q . … where the function P ν ( z ) is π -periodic. … If ν = 0 or 1 , then (28.29.1) has a nontrivial solution P ( z ) which is periodic with period π (when ν = 0 ) or 2 π (when ν = 1 ). …The solutions of period π or 2 π are exceptional in the following sense. If (28.29.1) has a periodic solution with minimum period n π , n = 3 , 4 , , then all solutions are periodic with period n π . …
8: 10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
10.34.4 K ν ( z e m π i ) = csc ( ν π ) ( ± sin ( m ν π ) K ν ( z e ± π i ) sin ( ( m 1 ) ν π ) K ν ( z ) ) .
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
9: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 6 1 2 1 2 3 1 3 3 2 2 3 3 3
π / 4 1 2 2 1 2 2 1 2 2 1
π / 2 1 0 1 0
π 0 1 0 1
10: 32.14 Combinatorics
Let S N be the group of permutations 𝝅 of the numbers 1 , 2 , , N 26.2). With 1 m 1 < < m n N , 𝝅 ( m 1 ) , 𝝅 ( m 2 ) , , 𝝅 ( m n ) is said to be an increasing subsequence of 𝝅 of length n when 𝝅 ( m 1 ) < 𝝅 ( m 2 ) < < 𝝅 ( m n ) . Let N ( 𝝅 ) be the length of the longest increasing subsequence of 𝝅 . …
32.14.1 lim N Prob ( N ( 𝝅 ) 2 N N 1 / 6 s ) = F ( s ) ,