About the Project

constant term identities

AdvancedHelp

(0.002 seconds)

21—23 of 23 matching pages

21: 13.6 Relations to Other Functions
13.6.5 M ( a , a + 1 , z ) = e z M ( 1 , a + 1 , z ) = a z a γ ( a , z ) ,
13.6.6 U ( a , a , z ) = z 1 a U ( 1 , 2 a , z ) = z 1 a e z E a ( z ) = e z Γ ( 1 a , z ) .
13.6.9 M ( ν + 1 2 , 2 ν + 1 , 2 z ) = Γ ( 1 + ν ) e z ( z / 2 ) ν I ν ( z ) ,
13.6.11_1 M ( ν + 1 2 , 2 ν + 1 + n , 2 z ) = Γ ( ν ) e z ( z / 2 ) ν k = 0 n ( n ) k ( 2 ν ) k ( ν + k ) ( 2 ν + 1 + n ) k k ! I ν + k ( z ) ,
For representations of Coulomb functions in terms of Kummer functions see (33.2.4), (33.2.8) and (33.14.5).
22: 35.7 Gaussian Hypergeometric Function of Matrix Argument
35.7.2 P ν ( γ , δ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 2 ( ν , γ + δ + ν + 1 2 ( m + 1 ) γ + 1 2 ( m + 1 ) ; 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; γ , δ , ν ; ( γ ) > 1 .
35.7.7 F 1 2 ( a , b c ; 𝐈 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) , ( c ) , ( c a b ) > 1 2 ( m 1 ) .
35.7.8 F 1 2 ( a , b c ; 𝐓 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) F 1 2 ( a , b a + b c + 1 2 ( m + 1 ) ; 𝐈 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; 1 2 ( j + 1 ) a for some j = 1 , , m ; 1 2 ( j + 1 ) c and c a b 1 2 ( m j ) for all j = 1 , , m .
These approximations are in terms of elementary functions. …
23: 21.7 Riemann Surfaces
§21.7(ii) Fay’s Trisecant Identity
For all 𝐳 g , and all P 1 , P 2 , P 3 , P 4 on Γ , Fay’s identity is given by … where again all integration paths are identical for all components. …
§21.7(iii) Frobenius’ Identity