About the Project

Watson integrals

AdvancedHelp

(0.003 seconds)

1—10 of 53 matching pages

1: 16.24 Physical Applications
§16.24(i) Random Walks
Generalized hypergeometric functions and Appell functions appear in the evaluation of the so-called Watson integrals which characterize the simplest possible lattice walks. …
2: 2.3 Integrals of a Real Variable
§2.3(ii) Watson’s Lemma
(In other words, differentiation of (2.3.8) with respect to the parameter λ (or μ ) is legitimate.) …
3: 2.4 Contour Integrals
§2.4(i) Watson’s Lemma
4: 10.54 Integral Representations
§10.54 Integral Representations
10.54.1 𝗃 n ( z ) = z n 2 n + 1 n ! 0 π cos ( z cos θ ) ( sin θ ) 2 n + 1 d θ .
Additional integral representations can be obtained by combining the definitions (10.47.3)–(10.47.9) with the results given in §10.9 and §10.32.
5: 10.32 Integral Representations
For collections of integral representations of modified Bessel functions, or products of modified Bessel functions, see Erdélyi et al. (1953b, §§7.3, 7.12, and 7.14.2), Erdélyi et al. (1954a, pp. 48–60, 105–115, 276–285, and 357–359), Gröbner and Hofreiter (1950, pp. 193–194), Magnus et al. (1966, §3.7), Marichev (1983, pp. 191–216), and Watson (1944, Chapters 6, 12, and 13).
6: 10.9 Integral Representations
10.9.26 J μ ( z ) J ν ( z ) = 2 π 0 π / 2 J μ + ν ( 2 z cos θ ) cos ( ( μ ν ) θ ) d θ , ( μ + ν ) > 1 .
For collections of integral representations of Bessel and Hankel functions see Erdélyi et al. (1953b, §§7.3 and 7.12), Erdélyi et al. (1954a, pp. 43–48, 51–60, 99–105, 108–115, 123–124, 272–276, and 356–357), Gröbner and Hofreiter (1950, pp. 189–192), Marichev (1983, pp. 191–192 and 196–210), Magnus et al. (1966, §3.6), and Watson (1944, Chapter 6).
7: 22.14 Integrals
§22.14 Integrals
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
§22.14(iii) Other Indefinite Integrals
§22.14(iv) Definite Integrals
8: 11.10 Anger–Weber Functions
§11.10(i) Definitions
For the Fresnel integrals C and S see §7.2(iii). …
§11.10(x) Integrals and Sums
For collections of integral representations and integrals see Erdélyi et al. (1954a, §§4.19 and 5.17), Marichev (1983, pp. 194–195 and 214–215), Oberhettinger (1972, p. 128), Oberhettinger (1974, §§1.12 and 2.7), Oberhettinger (1990, pp. 105 and 189–190), Prudnikov et al. (1990, §§1.5 and 2.8), Prudnikov et al. (1992a, §3.18), Prudnikov et al. (1992b, §3.18), and Zanovello (1977). …
9: 13.8 Asymptotic Approximations for Large Parameters
10: 20.9 Relations to Other Functions
§20.9(i) Elliptic Integrals
and the notation of §19.2(ii), the complete Legendre integrals of the first kind may be expressed as theta functions: …
K ( k ) = i τ K ( k ) ,
In the case of the symmetric integrals, with the notation of §19.16(i) we have … The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …