About the Project

Visit (-- RXLARA.COM --) pharmacy buy Super P Force jelly over counter. Sildenafil Citrate Super P Force jelly Dapoxetine 160

AdvancedHelp

(0.006 seconds)

11—20 of 821 matching pages

11: 4.4 Special Values and Limits
4.4.6 e ± π i / 2 = ± i ,
4.4.8 e ± π i / 3 = 1 2 ± i 3 2 ,
4.4.9 e ± 2 π i / 3 = 1 2 ± i 3 2 ,
4.4.10 e ± π i / 4 = 1 2 ± i 1 2 ,
12: 14.27 Zeros
P ν μ ( x ± i 0 ) (either side of the cut) has exactly one zero in the interval ( , 1 ) if either of the following sets of conditions holds: …For all other values of the parameters P ν μ ( x ± i 0 ) has no zeros in the interval ( , 1 ) . For complex zeros of P ν μ ( z ) see Hobson (1931, §§233, 234, and 238).
13: 33.2 Definitions and Basic Properties
§33.2(ii) Regular Solution F ( η , ρ )
§33.2(iii) Irregular Solutions G ( η , ρ ) , H ± ( η , ρ )
The functions H ± ( η , ρ ) are defined by … As in the case of F ( η , ρ ) , the solutions H ± ( η , ρ ) and G ( η , ρ ) are analytic functions of ρ when 0 < ρ < . Also, e i σ ( η ) H ± ( η , ρ ) are analytic functions of η when < η < . …
14: 26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. …
15: 4.37 Inverse Hyperbolic Functions
In (4.37.1) the integration path may not pass through either of the points t = ± i , and the function ( 1 + t 2 ) 1 / 2 assumes its principal value when t is real. In (4.37.2) the integration path may not pass through either of the points ± 1 , and the function ( t 2 1 ) 1 / 2 assumes its principal value when t ( 1 , ) . …In (4.37.3) the integration path may not intersect ± 1 . … Arcsinh z and Arccsch z have branch points at z = ± i ; the other four functions have branch points at z = ± 1 . … For example, arcsech a = arccoth ( ( 1 a 2 ) 1 / 2 ) .
16: 33.6 Power-Series Expansions in ρ
where A + 1 = 1 , A + 2 = η / ( + 1 ) , and
33.6.3 ( k + ) ( k 1 ) A k = 2 η A k 1 A k 2 , k = + 3 , + 4 , ,
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
where a = 1 + ± i η and ψ ( x ) = Γ ( x ) / Γ ( x ) 5.2(i)). … Corresponding expansions for H ± ( η , ρ ) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).
17: 4.21 Identities
4.21.1 sin u ± cos u = 2 sin ( u ± 1 4 π ) = ± 2 cos ( u 1 4 π ) .
4.21.4 tan ( u ± v ) = tan u ± tan v 1 tan u tan v ,
4.21.5 cot ( u ± v ) = ± cot u cot v 1 cot u ± cot v .
4.21.21 sin z 2 = ± ( 1 cos z 2 ) 1 / 2 ,
4.21.22 cos z 2 = ± ( 1 + cos z 2 ) 1 / 2 ,
18: 32.7 Bäcklund Transformations
and …with ζ = 2 1 / 3 z and ε = ± 1 , where W ( ζ ; 1 2 ε ) satisfies P II  with z = ζ , α = 1 2 ε , and w ( z ; 0 ) satisfies P II  with α = 0 . The solutions w α = w ( z ; α ) , w α ± 1 = w ( z ; α ± 1 ) , satisfy the nonlinear recurrence relation … Let w 0 = w ( z ; α 0 , β 0 ) and w j ± = w ( z ; α j ± , β j ± ) , j = 1 , 2 , 3 , 4 , be solutions of P IV  with … with ε = ± 1 . …
19: 19.34 Mutual Inductance of Coaxial Circles
19.34.3 2 a b I ( 𝐞 5 ) = a 3 I ( 𝟎 ) I ( 𝐞 3 ) = a 3 I ( 𝟎 ) r + 2 r 2 I ( 𝐞 3 ) = 2 a b ( I ( 𝟎 ) r 2 I ( 𝐞 1 𝐞 3 ) ) ,
where a 1 + b 1 t = 1 + t and
19.34.4 r ± 2 = a 3 ± 2 a b = h 2 + ( a ± b ) 2
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
19.34.6 c 2 2 π M = ( r + 2 + r 2 ) R F ( 0 , r + 2 , r 2 ) 4 R G ( 0 , r + 2 , r 2 ) .
20: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.15 Arcsinh u ± Arcsinh v = Arcsinh ( u ( 1 + v 2 ) 1 / 2 ± v ( 1 + u 2 ) 1 / 2 ) ,
4.38.16 Arccosh u ± Arccosh v = Arccosh ( u v ± ( ( u 2 1 ) ( v 2 1 ) ) 1 / 2 ) ,
4.38.17 Arctanh u ± Arctanh v = Arctanh ( u ± v 1 ± u v ) ,
4.38.18 Arcsinh u ± Arccosh v = Arcsinh ( u v ± ( ( 1 + u 2 ) ( v 2 1 ) ) 1 / 2 ) = Arccosh ( v ( 1 + u 2 ) 1 / 2 ± u ( v 2 1 ) 1 / 2 ) ,
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .