About the Project

Sines

AdvancedHelp

(0.001 seconds)

11—20 of 300 matching pages

11: 4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,
12: 4.47 Approximations
Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . Schonfelder (1980) gives 40D coefficients for sin , cos , tan . … Hart et al. (1968) give ln , exp , sin , cos , tan , cot , arcsin , arccos , arctan , sinh , cosh , tanh , arcsinh , arccosh . … Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
13: 6 Exponential, Logarithmic, Sine, and
Cosine Integrals
Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
14: 4.18 Inequalities
Jordan’s Inequality
4.18.1 2 x π sin x x , 0 x 1 2 π .
4.18.3 cos x sin x x 1 , 0 x π ,
4.18.5 | sinh y | | sin z | cosh y ,
4.18.9 | sin z | sinh | z | ,
15: 4.28 Definitions and Periodicity
4.28.1 sinh z = e z e z 2 ,
4.28.3 cosh z ± sinh z = e ± z ,
4.28.8 sin ( i z ) = i sinh z ,
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . The zeros of sinh z and cosh z are z = i k π and z = i ( k + 1 2 ) π , respectively, k .
16: 6.14 Integrals
§6.14(i) Laplace Transforms
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
§6.14(ii) Other Integrals
6.14.5 0 cos t Ci ( t ) d t = 0 sin t si ( t ) d t = 1 4 π ,
6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
17: 6.20 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for E 1 ( x ) + ln x , x e x E 1 ( x ) , and the auxiliary functions f ( x ) and g ( x ) . These are included in Abramowitz and Stegun (1964, Ch. 5).

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke and Wimp (1963) covers Ei ( x ) for x 4 (20D), and Si ( x ) and Ci ( x ) for x 4 (20D).

  • Luke (1969b, pp. 41–42) gives Chebyshev expansions of Ein ( a x ) , Si ( a x ) , and Cin ( a x ) for 1 x 1 , a . The coefficients are given in terms of series of Bessel functions.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function (§13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 18: 4.43 Cubic Equations
    4.43.2 z 3 + p z + q = 0
  • (a)

    A sin a , A sin ( a + 2 3 π ) , and A sin ( a + 4 3 π ) , with sin ( 3 a ) = 4 q / A 3 , when 4 p 3 + 27 q 2 0 .

  • (c)

    B sinh a , B sinh ( a + 2 3 π i ) , and B sinh ( a + 4 3 π i ) , with sinh ( 3 a ) = 4 q / B 3 , when p > 0 .

  • 19: 6.11 Relations to Other Functions
    20: 6.5 Further Interrelations
    §6.5 Further Interrelations
    6.5.3 1 2 ( Ei ( x ) + E 1 ( x ) ) = Shi ( x ) = i Si ( i x ) ,
    6.5.5 Si ( z ) = 1 2 i ( E 1 ( i z ) E 1 ( i z ) ) + 1 2 π ,