About the Project

Buy lapointe half 30mg - www.icmat. - Priligy 60 table. For remarke cautionation ott - www.icmat.

AdvancedHelp

(0.004 seconds)

11—20 of 266 matching pages

11: 30 Spheroidal Wave Functions
Chapter 30 Spheroidal Wave Functions
12: Bibliography G
β–Ί
  • W. Gautschi (2016) Algorithm 957: evaluation of the repeated integral of the coerror function by half-range Gauss-Hermite quadrature. ACM Trans. Math. Softw. 42 (1), pp. 9:1–9:10.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • β–Ί
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • 13: 5.21 Methods of Computation
    β–ΊAn effective way of computing Ξ“ ⁑ ( z ) in the right half-plane is backward recurrence, beginning with a value generated from the asymptotic expansion (5.11.3). …For the left half-plane we can continue the backward recurrence or make use of the reflection formula (5.5.3). …
    14: 34.5 Basic Properties: 6 ⁒ j Symbol
    β–Ί
    34.5.8 { j 1 j 2 j 3 l 1 l 2 l 3 } = { j 2 j 1 j 3 l 2 l 1 l 3 } = { j 1 l 2 l 3 l 1 j 2 j 3 } .
    β–Ί
    34.5.9 { j 1 j 2 j 3 l 1 l 2 l 3 } = { j 1 1 2 ⁒ ( j 2 + l 2 + j 3 l 3 ) 1 2 ⁒ ( j 2 l 2 + j 3 + l 3 ) l 1 1 2 ⁒ ( j 2 + l 2 j 3 + l 3 ) 1 2 ⁒ ( j 2 + l 2 + j 3 + l 3 ) } ,
    β–Ί
    34.5.13 E ⁑ ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ⁒ ( ( j 2 + j 3 + 1 ) 2 j 2 ) ⁒ ( j 2 ( l 2 l 3 ) 2 ) ⁒ ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
    β–Ί
    34.5.19 l { j 1 j 2 l j 2 j 1 j } = 0 , 2 ⁒ μ j odd, μ = min ⁑ ( j 1 , j 2 ) ,
    β–Ί
    34.5.20 l ( 1 ) l + j ⁒ { j 1 j 2 l j 1 j 2 j } = ( 1 ) 2 ⁒ μ 2 ⁒ j + 1 , μ = min ⁑ ( j 1 , j 2 ) ,
    15: 29.21 Tables
    §29.21 Tables
    β–Ί
  • Ince (1940a) tabulates the eigenvalues a Ξ½ m ⁑ ( k 2 ) , b Ξ½ m + 1 ⁑ ( k 2 ) (with a Ξ½ 2 ⁒ m + 1 and b Ξ½ 2 ⁒ m + 1 interchanged) for k 2 = 0.1 , 0.5 , 0.9 , Ξ½ = 1 2 , 0 ⁒ ( 1 ) ⁒ 25 , and m = 0 , 1 , 2 , 3 . Precision is 4D.

  • β–Ί
  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ⁒ ( .1 ) ⁒ 0.9 , n = 1 ⁒ ( 1 ) ⁒ 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 16: Bibliography I
    β–Ί
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • β–Ί
  • E. L. Ince (1932) Tables of the elliptic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 52, pp. 355–433.
  • β–Ί
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • β–Ί
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • 17: 6.17 Physical Applications
    β–ΊLebedev (1965) gives an application to electromagnetic theory (radiation of a linear half-wave oscillator), in which sine and cosine integrals are used.
    18: 24.2 Definitions and Generating Functions
    β–Ί
    §24.2(iv) Tables
    β–Ί
    Table 24.2.1: Bernoulli and Euler numbers.
    β–Ί β–Ίβ–Ί
    n B n E n
    β–Ί
    β–Ί
    Table 24.2.2: Bernoulli and Euler polynomials.
    β–Ί β–Ίβ–Ί
    n B n ⁑ ( x ) E n ⁑ ( x )
    β–Ί
    19: 24.1 Special Notation
    β–ΊThe present notation, as defined in §24.2(i), was used in Lucas (1891) and Nörlund (1924), and has become the prevailing notation; see Table 24.2.1. … β–Ί
    B 2 = 1 30 ,
    β–Ί
    B 4 = 1 30 , .
    β–ΊOther historical remarks on notations can be found in Cajori (1929, pp. 42–44). …
    20: 14.33 Tables
    §14.33 Tables
    β–Ί
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 0 ⁒ ( .1 ) ⁒ 1 , 7D; 𝖯 n ⁑ ( cos ⁑ ΞΈ ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 0 ⁒ ( .1 ) ⁒ 0.9 , 8S; 𝖰 n ⁑ ( cos ⁑ ΞΈ ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖯 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n m = 0 ⁒ ( 1 ) ⁒ 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , 8S; 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) for m = 0 ⁒ ( 1 ) ⁒ 3 , Ξ½ = 0 ⁒ ( .25 ) ⁒ 5 , ΞΈ = 0 ⁒ ( 15 ∘ ) ⁒ 90 ∘ , 5D; P n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 1 ⁒ ( 1 ) ⁒ 10 , 7S; Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 2 ⁒ ( 1 ) ⁒ 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 Ξ½ -zeros of 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) and of its derivative for m = 0 ⁒ ( 1 ) ⁒ 4 , ΞΈ = 10 ∘ , 30 ∘ , 150 ∘ .

  • β–Ί
  • Ε½urina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i ⁒ Ο„ ⁑ ( x ) for Ο„ = 0 ⁒ ( .01 ) ⁒ 50 , x = 0.9 ⁒ ( .1 ) ⁒ 0.9 , 7S; P 1 2 + i ⁒ Ο„ ⁑ ( x ) for Ο„ = 0 ⁒ ( .01 ) ⁒ 50 , x = 1.1 ⁒ ( .1 ) ⁒ 2 ⁒ ( .2 ) ⁒ 5 ⁒ ( .5 ) ⁒ 10 ⁒ ( 10 ) ⁒ 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of Ο„ when 1 < x < 1 .

  • β–Ί
  • Ε½urina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i ⁒ Ο„ 1 ⁑ ( x ) for Ο„ = 0 ⁒ ( .01 ) ⁒ 25 , x = 0.9 ⁒ ( .1 ) ⁒ 0.9 , 7S; P 1 2 + i ⁒ Ο„ 1 ⁑ ( x ) for Ο„ = 0 ⁒ ( .01 ) ⁒ 25 , x = 1.1 ⁒ ( .1 ) ⁒ 2 ⁒ ( .2 ) ⁒ 5 ⁒ ( .5 ) ⁒ 10 ⁒ ( 10 ) ⁒ 60 , 7S. Auxiliary tables are included to assist computation for larger values of Ο„ when 1 < x < 1 .

  • β–ΊFor tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).