About the Project

.06世界杯阿根廷德国_『wn4.com_』世界杯球队夺冠概率_w6n2c9o_2022年11月29日15时45分40秒_w48y4c4i4

AdvancedHelp

(0.006 seconds)

21—30 of 784 matching pages

21: 3.2 Linear Algebra
where u j = c j , j = 1 , 2 , , n 1 , d 1 = b 1 , and …Forward elimination for solving 𝐀 𝐱 = 𝐟 then becomes y 1 = f 1 , …and back substitution is x n = y n / d n , followed by … Define the Lanczos vectors 𝐯 j and coefficients α j and β j by 𝐯 0 = 𝟎 , a normalized vector 𝐯 1 (perhaps chosen randomly), α 1 = 𝐯 1 T 𝐀 𝐯 1 , β 1 = 0 , and for j = 1 , 2 , , n 1 by the recursive scheme … Start with 𝐯 0 = 𝟎 , vector 𝐯 1 such that 𝐯 1 T 𝐒 𝐯 1 = 1 , α 1 = 𝐯 1 T 𝐀 𝐯 1 , β 1 = 0 . …
22: 3.11 Approximation Techniques
Beginning with u n + 1 = 0 , u n = c n , we apply … With b 0 = 1 , the last q equations give b 1 , , b q as the solution of a system of linear equations. … (3.11.29) is a system of n + 1 linear equations for the coefficients a 0 , a 1 , , a n . … With this choice of a k and f j = f ( x j ) , the corresponding sum (3.11.32) vanishes. … Two are endpoints: ( x 0 , y 0 ) and ( x 3 , y 3 ) ; the other points ( x 1 , y 1 ) and ( x 2 , y 2 ) are control points. …
23: 21.1 Special Notation
g , h positive integers.
a j j th element of vector 𝐚 .
diag 𝐀 Transpose of [ A 11 , A 22 , , A g g ] .
𝐉 2 g [ 𝟎 g 𝐈 g 𝐈 g 𝟎 g ] .
S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
24: 19.29 Reduction of General Elliptic Integrals
Let …where … Next, for j = 1 , 2 , define Q j ( t ) = f j + g j t + h j t 2 , and assume both Q ’s are positive for y < t < x . …where …If Q 1 ( t ) = ( a 1 + b 1 t ) ( a 2 + b 2 t ) , where both linear factors are positive for y < t < x , and Q 2 ( t ) = f 2 + g 2 t + h 2 t 2 , then (19.29.25) is modified so that …
25: Bibliography K
  • M. K. Kerimov and S. L. Skorokhodov (1984c) Evaluation of complex zeros of Bessel functions J ν ( z ) and I ν ( z ) and their derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 24 (10), pp. 1497–1513.
  • S. K. Kim (1972) The asymptotic expansion of a hypergeometric function F 2 2 ( 1 , α ; ρ 1 , ρ 2 ; z ) . Math. Comp. 26 (120), pp. 963.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • C. G. Kokologiannaki, P. D. Siafarikas, and C. B. Kouris (1992) On the complex zeros of H μ ( z ) , J μ ( z ) , J μ ′′ ( z ) for real or complex order. J. Comput. Appl. Math. 40 (3), pp. 337–344.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 26: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • F. H. L. Essler, H. Frahm, A. R. Its, and V. E. Korepin (1996) Painlevé transcendent describes quantum correlation function of the X X Z antiferromagnet away from the free-fermion point. J. Phys. A 29 (17), pp. 5619–5626.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • W. N. Everitt (2008) Note on the X 1 -Laguerre orthogonal polynomials.
  • 27: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    11 π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) ( 2 3 ) 2 ( 3 + 1 ) 2 ( 3 1 ) ( 2 + 3 )
    4.17.1 lim z 0 sin z z = 1 ,
    4.17.2 lim z 0 tan z z = 1 .
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    28: Bibliography H
  • L. Habsieger (1986) La q -conjecture de Macdonald-Morris pour G 2 . C. R. Acad. Sci. Paris Sér. I Math. 303 (6), pp. 211–213 (French).
  • R. S. Heller (1976) 25D Table of the First One Hundred Values of j 0 , s , J 1 ( j 0 , s ) , j 1 , s , J 0 ( j 1 , s ) = J 0 ( j 0 , s + 1 ) , j 1 , s , J 1 ( j 1 , s ) . Technical report Department of Physics, Worcester Polytechnic Institute, Worcester, MA.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I 1 ( x ) / I 0 ( x ) , I 1.5 ( x ) / I 0.5 ( x ) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • 29: 24.19 Methods of Computation
    Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …For example, the tangent numbers T n can be generated by simple recurrence relations obtained from (24.15.3), then (24.15.4) is applied. … For other information see Chellali (1988) and Zhang and Jin (1996, pp. 1–11). For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
    §24.19(ii) Values of B n Modulo p
    30: Bibliography O
  • K. Okamoto (1986) Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P II and P IV . Math. Ann. 275 (2), pp. 221–255.
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • K. Okamoto (1987c) Studies on the Painlevé equations. IV. Third Painlevé equation P III . Funkcial. Ekvac. 30 (2-3), pp. 305–332.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.