About the Project

.世界杯赌挣钱吗盘_『welcom_』澳门赛的抽签出来了吗_w2n3c1o_2022年12月10日16时43分54秒_eeyyrupg4_gov_hk

AdvancedHelp

(0.003 seconds)

11—20 of 268 matching pages

11: 25.20 Approximations
  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 12: Staff
  • Leonard C. Maximon, George Washington University, Chaps. 10, 34

  • Frank W. J. Olver, University of Maryland and NIST, Chaps. 1, 2, 4, 9, 10

  • Nico M. Temme, Centrum Wiskunde Informatica, Chaps. 3, 6, 7, 12

  • Diego Dominici, State University of New York at New Paltz, for Chaps. 9, 10 (deceased)

  • Nico M. Temme, Centrum Wiskunde & Informatica (CWI), for Chaps. 3, 6, 7, 12

  • 13: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Barrett (1964) tabulates 𝐋 n ( x ) for n = 0 , 1 and x = 0.2 ( .005 ) 4 ( .05 ) 10 ( .1 ) 19.2 to 5 or 6S, x = 6 ( .25 ) 59.5 ( .5 ) 100 to 2S.

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • Bernard and Ishimaru (1962) tabulates 𝐉 ν ( x ) and 𝐄 ν ( x ) for ν = 10 ( .1 ) 10 and x = 0 ( .1 ) 10 to 5D.

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ( x , α ) for n = 0 , 1 , x = 0 ( .2 ) 10 , and α = 0 ( .2 ) 1.4 , 1 2 π , together with surface plots.

  • 14: 26.5 Lattice Paths: Catalan Numbers
    Table 26.5.1: Catalan numbers.
    n C ( n ) n C ( n ) n C ( n )
    3 5 10 16796 17 1296 44790
    5 42 12 2 08012 19 17672 63190
    15: 34.11 Higher-Order 3 n j Symbols
    For information on 12 j , 15 j ,…, symbols, see Varshalovich et al. (1988, §10.12) and Yutsis et al. (1962, pp. 62–65 and 122–153).
    16: Bibliography P
  • R. B. Paris and W. N.-C. Sy (1983) Influence of equilibrium shear flow along the magnetic field on the resistive tearing instability. Phys. Fluids 26 (10), pp. 2966–2975.
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • H. N. Phien (1988) A Fortran routine for the computation of gamma percentiles. Adv. Eng. Software 10 (3), pp. 159–164.
  • H. N. Phien (1990) A note on the computation of the incomplete beta function. Adv. Eng. Software 12 (1), pp. 39–44.
  • S. Pratt (2007) Comoving coordinate system for relativistic hydrodynamics. Phy. Rev. C 75, pp. (024907–1)–(024907–10).
  • 17: Bibliography Z
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • D. Zeilberger and D. M. Bressoud (1985) A proof of Andrews’ q -Dyson conjecture. Discrete Math. 54 (2), pp. 201–224.
  • I. J. Zucker (1979) The summation of series of hyperbolic functions. SIAM J. Math. Anal. 10 (1), pp. 192–206.
  • H. S. Zuckerman (1939) The computation of the smaller coefficients of J ( τ ) . Bull. Amer. Math. Soc. 45 (12), pp. 917–919.
  • 18: 3.9 Acceleration of Convergence
    with s = 1 12 π 2 = 0.82246 70334 24 .
    Table 3.9.1: Shanks’ transformation for s n = j = 1 n ( 1 ) j + 1 j 2 .
    n t n , 2 t n , 4 t n , 6 t n , 8 t n , 10
    6 0.82239 19390 77 0.82246 61352 37 0.82246 70190 76 0.82246 70331 54 0.82246 70334 18
    10 0.82245 30535 15 0.82246 69397 57 0.82246 70324 88 0.82246 70334 12 0.82246 70334 24
    For examples and other transformations for convergent sequences and series, see Wimp (1981, pp. 156–199), Brezinski and Redivo Zaglia (1991, pp. 55–72), and Sidi (2003, Chapters 6, 12–13, 15–16, 19–24, and pp. 483–492). …
    19: Bibliography W
  • X.-S. Wang and R. Wong (2012) Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. (Singap.) 10 (2), pp. 215–235.
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • R. Wong and M. Wyman (1974) The method of Darboux. J. Approximation Theory 10 (2), pp. 159–171.
  • R. Wong (1981) Asymptotic expansions of the Kontorovich-Lebedev transform. Appl. Anal. 12 (3), pp. 161–172.
  • R. Wong (2014) Asymptotics of linear recurrences. Anal. Appl. (Singap.) 12 (4), pp. 463–484.
  • 20: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
    12 H n ( x ) 1 2 x 0 2 n