About the Project

.世界杯直播频道cctv5回放_『wn4.com_』国足参加过世界杯吗_w6n2c9o_2022年11月29日22时50分34秒_k6imqu2oe

AdvancedHelp

(0.006 seconds)

21—30 of 786 matching pages

21: 16.4 Argument Unity
The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if …It is very well-poised if it is well-poised and a 1 = b 1 + 1 . … The function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … For generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). …
22: 24.2 Definitions and Generating Functions
B 2 n + 1 = 0 ,
24.2.4 B n = B n ( 0 ) ,
Table 24.2.4: Euler numbers E n .
n E n
Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
k
Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
k
23: 21.1 Special Notation
g , h positive integers.
a j j th element of vector 𝐚 .
diag 𝐀 Transpose of [ A 11 , A 22 , , A g g ] .
𝐉 2 g [ 𝟎 g 𝐈 g 𝐈 g 𝟎 g ] .
S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
24: 17.7 Special Cases of Higher ϕ s r Functions
§17.7(i) ϕ 2 2 Functions
q -Analog of Bailey’s F 1 2 ( 1 ) Sum
q -Analog of Gauss’s F 1 2 ( 1 ) Sum
q -Analog of Dixon’s F 2 3 ( 1 ) Sum
where m 1 , m 2 , , m r are arbitrary nonnegative integers. …
25: 28.6 Expansions for Small q
Leading terms of the power series for a m ( q ) and b m ( q ) for m 6 are: … The coefficients of the power series of a 2 n ( q ) , b 2 n ( q ) and also a 2 n + 1 ( q ) , b 2 n + 1 ( q ) are the same until the terms in q 2 n 2 and q 2 n , respectively. … Numerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. Here j = 1 for a 2 n ( q ) , j = 2 for b 2 n + 2 ( q ) , and j = 3 for a 2 n + 1 ( q ) and b 2 n + 1 ( q ) . …
§28.6(ii) Functions ce n and se n
26: 3.1 Arithmetics and Error Measures
with b 0 = 1 and all allowable choices of E , p , s , and b j . … Let E min E E max with E min < 0 and E max > 0 . …The integers p , E min , and E max are characteristics of the machine. … The respective machine precisions are 1 2 ϵ M = 0.596 × 10 7 , 1 2 ϵ M = 0.111 × 10 15 and 1 2 ϵ M = 0.963 × 10 34 . … N min x N max , and …
27: 17.13 Integrals
In this section, for the function Γ q see §5.18(ii).
17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
28: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
29: 17.14 Constant Term Identities
17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .
30: 24.19 Methods of Computation
Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …For example, the tangent numbers T n can be generated by simple recurrence relations obtained from (24.15.3), then (24.15.4) is applied. … If N ~ 2 n denotes the right-hand side of (24.19.1) but with the second product taken only for p ( π e ) 1 2 n + 1 , then N 2 n = N ~ 2 n for n 2 . … For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
§24.19(ii) Values of B n Modulo p