About the Project

two%20or%20more%20variables

AdvancedHelp

(0.003 seconds)

21—30 of 31 matching pages

21: 20.10 Integrals
22: Bibliography N
β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • G. Nemes (2021) Proofs of two conjectures on the real zeros of the cylinder and Airy functions. SIAM J. Math. Anal. 53 (4), pp. 4328–4349.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 23: Bibliography W
    β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • G. N. Watson (1937) Two tables of partitions. Proc. London Math. Soc. (2) 42, pp. 550–556.
  • β–Ί
  • R. Wong (1973a) An asymptotic expansion of W k , m ⁒ ( z ) with large variable and parameters. Math. Comp. 27 (122), pp. 429–436.
  • β–Ί
  • J. W. Wrench (1968) Concerning two series for the gamma function. Math. Comp. 22 (103), pp. 617–626.
  • β–Ί
  • T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch (1976) Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region. Phys. Rev. B 13, pp. 316–374.
  • 24: 26.13 Permutations: Cycle Notation
    β–ΊA transposition is a permutation that consists of a single cycle of length two. An adjacent transposition is a transposition of two consecutive integers. A permutation that consists of a single cycle of length k can be written as the composition of k 1 two-cycles (read from right to left): …
    25: 22.3 Graphics
    β–Ί
    §22.3(i) Real Variables: Line Graphs
    β–Ί
    §22.3(ii) Real Variables: Surfaces
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 22.3.13: sn ⁑ ( x , k ) for k = 1 e n , n = 0 to 20, 5 ⁒ Ο€ x 5 ⁒ Ο€ . Magnify 3D Help
    β–Ί
    §22.3(iii) Complex z ; Real k
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 22.3.28: Density plot of | sn ⁑ ( 20 , k ) | as a function of complex k 2 , 10 ⁑ ( k 2 ) 20 , 10 ⁑ ( k 2 ) 10 . … Magnify
    26: 3.8 Nonlinear Equations
    β–Ί(More precisely, p is the largest of the possible set of indices for (3.8.3).) … β–ΊIf f ⁒ ( a ) ⁒ f ⁒ ( b ) < 0 with a < b , then the interval [ a , b ] contains one or more zeros of f . … β–ΊThis example illustrates the fact that the method succeeds even if the two zeros of the wanted quadratic factor are real and the same. … β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . …
    27: Bibliography P
    β–Ί
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions. Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • β–Ί
  • R. B. Paris (1991) The asymptotic behaviour of Pearcey’s integral for complex variables. Proc. Roy. Soc. London Ser. A 432 (1886), pp. 391–426.
  • β–Ί
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • β–Ί
  • G. Pólya (1949) Remarks on computing the probability integral in one and two dimensions. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 63–78.
  • β–Ί
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1990) Integrals and Series: More Special Functions, Vol. 3. Gordon and Breach Science Publishers, New York.
  • 28: 25.5 Integral Representations
    β–Ί
    25.5.1 ΞΆ ⁑ ( s ) = 1 Ξ“ ⁑ ( s ) ⁒ 0 x s 1 e x 1 ⁒ d x , ⁑ s > 1 .
    β–Ί
    25.5.2 ΞΆ ⁑ ( s ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ 0 e x ⁒ x s ( e x 1 ) 2 ⁒ d x , ⁑ s > 1 .
    β–Ί
    25.5.3 ΞΆ ⁑ ( s ) = 1 ( 1 2 1 s ) ⁒ Ξ“ ⁑ ( s ) ⁒ 0 x s 1 e x + 1 ⁒ d x , ⁑ s > 0 .
    β–Ί
    25.5.5 ΢ ⁑ ( s ) = s ⁒ 0 x x 1 2 x s + 1 ⁒ d x , 1 < ⁑ s < 0 .
    β–Ί
    25.5.7 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ ( s ) 2 ⁒ m 1 + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ x 2 ⁒ m 1 ) ⁒ x s 1 e x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , n = 1 , 2 , 3 , .
    29: 3.4 Differentiation
    β–Ί
    Two-Point Formula
    β–Ί
    B 2 5 = 1 120 ⁒ ( 6 10 ⁒ t 15 ⁒ t 2 + 20 ⁒ t 3 5 ⁒ t 4 ) ,
    β–Ί
    B 3 6 = 1 720 ⁒ ( 12 8 ⁒ t 45 ⁒ t 2 + 20 ⁒ t 3 + 15 ⁒ t 4 6 ⁒ t 5 ) ,
    β–Ί
    B 2 6 = 1 60 ⁒ ( 9 9 ⁒ t 30 ⁒ t 2 + 20 ⁒ t 3 + 5 ⁒ t 4 3 ⁒ t 5 ) ,
    β–Ί
    B 2 6 = 1 60 ⁒ ( 9 + 9 ⁒ t 30 ⁒ t 2 20 ⁒ t 3 + 5 ⁒ t 4 + 3 ⁒ t 5 ) ,
    30: Bibliography O
    β–Ί
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • β–Ί
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • β–Ί
  • F. W. J. Olver (1975a) Second-order linear differential equations with two turning points. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 137–174.
  • β–Ί
  • F. W. J. Olver (1976) Improved error bounds for second-order differential equations with two turning points. J. Res. Nat. Bur. Standards Sect. B 80B (4), pp. 437–440.
  • β–Ί
  • J. M. Ortega and W. C. Rheinboldt (1970) Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York.