About the Project

trigonometric%20form

AdvancedHelp

(0.002 seconds)

8 matching pages

1: 25.6 Integer Arguments
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.6 ζ ( 2 k + 1 ) = ( 1 ) k + 1 ( 2 π ) 2 k + 1 2 ( 2 k + 1 ) ! 0 1 B 2 k + 1 ( t ) cot ( π t ) d t , k = 1 , 2 , 3 , .
2: 28.8 Asymptotic Expansions for Large q
28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
28.8.9 W m ± ( x ) = e ± 2 h sin x ( cos x ) m + 1 { ( cos ( 1 2 x + 1 4 π ) ) 2 m + 1 , ( sin ( 1 2 x + 1 4 π ) ) 2 m + 1 ,
28.8.11 P m ( x ) 1 + s 2 3 h cos 2 x + 1 h 2 ( s 4 + 86 s 2 + 105 2 11 cos 4 x s 4 + 22 s 2 + 57 2 11 cos 2 x ) + ,
28.8.12 Q m ( x ) sin x cos 2 x ( 1 2 5 h ( s 2 + 3 ) + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cos 2 x ) ) + .
3: 10.73 Physical Applications
and on separation of variables we obtain solutions of the form e ± i n ϕ e ± κ z J n ( κ r ) , from which a solution satisfying prescribed boundary conditions may be constructed. … on assuming a time dependence of the form e ± i k t . …See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). …
10.73.4 ( 2 + k 2 ) f = 1 ρ 2 ρ ( ρ 2 f ρ ) + 1 ρ 2 sin θ θ ( sin θ f θ ) + 1 ρ 2 sin 2 θ 2 f ϕ 2 + k 2 f .
With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. …
4: Software Index
Open Source With Book Commercial
6.21(ii) E 1 ( x ) , Ei ( x ) , Si ( x ) , Ci ( x ) , Shi ( x ) , Chi ( x ) , x
6.21(iii) E 1 ( z ) , Si ( z ) , Ci ( z ) , Shi ( z ) , Chi ( z ) , z
7.25(v) C ( z ) , S ( z ) , z a
20 Theta Functions
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • 5: 5.11 Asymptotic Expansions
    Wrench (1968) gives exact values of g k up to g 20 . … If z is complex, then the remainder terms are bounded in magnitude by sec 2 n ( 1 2 ph z ) for (5.11.1), and sec 2 n + 1 ( 1 2 ph z ) for (5.11.2), times the first neglected terms. …
    5.11.11 | R K ( z ) | ( 1 + ζ ( K ) ) Γ ( K ) 2 ( 2 π ) K + 1 | z | K ( 1 + min ( sec ( ph z ) , 2 K 1 2 ) ) , | ph z | 1 2 π ,
    6: Errata
    The spectral theory of these operators, based on Sturm-Liouville and Liouville normal forms, distribution theory, is now discussed more completely, including linear algebra, matrices, matrices as linear operators, orthonormal expansions, Stieltjes integrals/measures, generating functions. …
  • Equation (4.21.1)
    4.21.1 sin u ± cos u = 2 sin ( u ± 1 4 π ) = ± 2 cos ( u 1 4 π )

    Originally the symbol ± was missing after the second equal sign.

    Reported 2012-09-27 by Dennis Heim.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Table 22.5.4

    Originally the limiting form for sc ( z , k ) in the last line of this table was incorrect ( cosh z , instead of sinh z ).

    sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
    cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
    dn ( z , k ) sech z nd ( z , k ) cosh z sc ( z , k ) sinh z cs ( z , k ) csch z

    Reported 2010-11-23.

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 7: 25.12 Polylogarithms
    25.12.7 Li 2 ( e i θ ) = n = 1 cos ( n θ ) n 2 + i n = 1 sin ( n θ ) n 2 .
    25.12.8 n = 1 cos ( n θ ) n 2 = π 2 6 π θ 2 + θ 2 4 .
    25.12.9 n = 1 sin ( n θ ) n 2 = 0 θ ln ( 2 sin ( 1 2 x ) ) d x .
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    8: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • R. S. Scorer (1950) Numerical evaluation of integrals of the form I = x 1 x 2 f ( x ) e i ϕ ( x ) 𝑑 x and the tabulation of the function Gi ( z ) = ( 1 / π ) 0 sin ( u z + 1 3 u 3 ) 𝑑 u . Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.