About the Project
NIST

series representation

AdvancedHelp

(0.002 seconds)

1—10 of 74 matching pages

1: 1.17 Integral and Series Representations of the Dirac Delta
§1.17 Integral and Series Representations of the Dirac Delta
§1.17(iii) Series Representations
By analogy with §1.17(ii) we have the formal series representation
Legendre Polynomials (§§14.7(i) and 18.3)
Laguerre Polynomials (§18.3)
2: 25.16 Mathematical Applications
25.16.1 ψ ( x ) = m = 1 p m x ln p ,
25.16.5 H ( s ) = n = 1 H n n s ,
25.16.6 H ( s ) = - ζ ( s ) + γ ζ ( s ) + 1 2 ζ ( s + 1 ) + r = 1 k ζ ( 1 - 2 r ) ζ ( s + 2 r ) + n = 1 1 n s n B ~ 2 k + 1 ( x ) x 2 k + 2 d x ,
25.16.7 H ( s ) = 1 2 ζ ( s + 1 ) + ζ ( s ) s - 1 - r = 1 k ( s + 2 r - 2 2 r - 1 ) ζ ( 1 - 2 r ) ζ ( s + 2 r ) - ( s + 2 k 2 k + 1 ) n = 1 1 n n B ~ 2 k + 1 ( x ) x s + 2 k + 1 d x .
25.16.11 H ( s , z ) = n = 1 1 n s m = 1 n 1 m z , ( s + z ) > 1 ,
3: 25.13 Periodic Zeta Function
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
4: 25.11 Hurwitz Zeta Function
§25.11(iv) Series Representations
25.11.8 ζ ( s , 1 2 a ) = ζ ( s , 1 2 a + 1 2 ) + 2 s n = 0 ( - 1 ) n ( n + a ) s , s > 0 , s 1 , 0 < a 1 .
§25.11(x) Further Series Representations
25.11.37 k = 1 ( - 1 ) k k ζ ( n k , a ) = - n ln Γ ( a ) + ln ( j = 0 n - 1 Γ ( a - e ( 2 j + 1 ) π i / n ) ) , n = 2 , 3 , 4 , , a 1 .
25.11.38 k = 1 ( n + k k ) ζ ( n + k + 1 , a ) z k = ( - 1 ) n n ! ( ψ ( n ) ( a ) - ψ ( n ) ( a - z ) ) , n = 1 , 2 , 3 , , a > 0 , | z | < | a | .
5: 25.12 Polylogarithms
25.12.7 Li 2 ( e i θ ) = n = 1 cos ( n θ ) n 2 + i n = 1 sin ( n θ ) n 2 .
25.12.10 Li s ( z ) = n = 1 z n n s .
25.12.12 Li s ( z ) = Γ ( 1 - s ) ( ln 1 z ) s - 1 + n = 0 ζ ( s - n ) ( ln z ) n n ! , s 1 , 2 , 3 , , | ln z | < 2 π ,
6: 12.18 Methods of Computation
These include the use of power-series expansions, recursion, integral representations, differential equations, asymptotic expansions, and expansions in series of Bessel functions. …
7: 25.15 Dirichlet L -functions
25.15.1 L ( s , χ ) = n = 1 χ ( n ) n s , s > 1 ,
8: 25.14 Lerch’s Transcendent
25.14.1 Φ ( z , s , a ) n = 0 z n ( a + n ) s , | z | < 1 ; s > 1 , | z | = 1 .
9: Bibliography V
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1992) Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • H. Volkmer (2021) Fourier series representation of Ferrers function P .
  • 10: Bibliography E
  • J. A. Ewell (1990) A new series representation for ζ ( 3 ) . Amer. Math. Monthly 97 (3), pp. 219–220.