About the Project

expansions in series of Bessel functions

AdvancedHelp

(0.023 seconds)

31—40 of 62 matching pages

31: 11.15 Approximations
β–Ί
§11.15(i) Expansions in Chebyshev Series
β–Ί
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ⁑ ( x ) , 𝐋 n ⁑ ( x ) , 0 | x | 8 , and 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) , x 8 , for n = 0 , 1 ; 0 x t m ⁒ 𝐇 0 ⁑ ( t ) ⁒ d t , 0 x t m ⁒ 𝐋 0 ⁑ ( t ) ⁒ d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t , x t 1 ⁒ ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t , x 8 ; the coefficients are to 20D.

  • β–Ί
  • MacLeod (1993) gives Chebyshev-series expansions for 𝐋 0 ⁑ ( x ) , 𝐋 1 ⁑ ( x ) , 0 x 16 , and I 0 ⁑ ( x ) 𝐋 0 ⁑ ( x ) , I 1 ⁑ ( x ) 𝐋 1 ⁑ ( x ) , x 16 ; the coefficients are to 20D.

  • β–Ί
  • Newman (1984) gives polynomial approximations for 𝐇 n ⁑ ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.

  • 32: 10.8 Power Series
    §10.8 Power Series
    β–ΊFor J Ξ½ ⁑ ( z ) see (10.2.2) and (10.4.1). When Ξ½ is not an integer the corresponding expansions for Y Ξ½ ⁑ ( z ) , H Ξ½ ( 1 ) ⁑ ( z ) , and H Ξ½ ( 2 ) ⁑ ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). … β–ΊIn particular, … β–ΊThe corresponding results for H n ( 1 ) ⁑ ( z ) and H n ( 2 ) ⁑ ( z ) are obtained via (10.4.3) with Ξ½ = n . …
    33: 3.6 Linear Difference Equations
    β–Ί
    Example 1. Bessel Functions
    β–Ίis satisfied by J n ⁑ ( 1 ) and Y n ⁑ ( 1 ) , where J n ⁑ ( x ) and Y n ⁑ ( x ) are the Bessel functions of the first kind. …Thus Y n ⁑ ( 1 ) is dominant and can be computed by forward recursion, whereas J n ⁑ ( 1 ) is recessive and has to be computed by backward recursion. … β–ΊThus the asymptotic behavior of the particular solution 𝐄 n ⁑ ( 1 ) is intermediate to those of the complementary functions J n ⁑ ( 1 ) and Y n ⁑ ( 1 ) ; moreover, the conditions for Olver’s algorithm are satisfied. We apply the algorithm to compute 𝐄 n ⁑ ( 1 ) to 8S for the range n = 1 , 2 , , 10 , beginning with the value 𝐄 0 ⁑ ( 1 ) = 0.56865  663 obtained from the Maclaurin series expansion11.10(iii)). …
    34: 2.8 Differential Equations with a Parameter
    β–Ί
    §2.8(iv) Case III: Simple Pole
    β–ΊFor other examples of uniform asymptotic approximations and expansions of special functions in terms of Bessel functions or modified Bessel functions of fixed order see §§13.8(iii), 13.21(i), 13.21(iv), 14.15(i), 14.15(iii), 14.20(vii), 15.12(iii), 18.15(i), 18.15(iv), 18.24, 33.20(iv). … β–ΊFor a coalescing turning point and double pole see Boyd and Dunster (1986) and Dunster (1990b); in this case the uniform approximants are Bessel functions of variable order. … β–ΊFor further examples of uniform asymptotic approximations in terms of parabolic cylinder functions see §§13.20(iii), 13.20(iv), 14.15(v), 15.12(iii), 18.24. β–ΊFor further examples of uniform asymptotic approximations in terms of Bessel functions or modified Bessel functions of variable order see §§13.21(ii), 14.15(ii), 14.15(iv), 14.20(viii), 30.9(i), 30.9(ii). …
    35: Bibliography W
    β–Ί
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • β–Ί
  • E. J. Weniger (2007) Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions. In Algorithms for Approximation, A. Iske and J. Levesley (Eds.), pp. 331–348.
  • β–Ί
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • β–Ί
  • R. Wong and J.-M. Zhang (1997) Asymptotic expansions of the generalized Bessel polynomials. J. Comput. Appl. Math. 85 (1), pp. 87–112.
  • β–Ί
  • E. M. Wright (1935) The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2) 38, pp. 257–270.
  • 36: 14.15 Uniform Asymptotic Approximations
    β–ΊIn other words, the convergent hypergeometric series expansions of 𝖯 Ξ½ ΞΌ ⁑ ( ± x ) are also generalized (and uniform) asymptotic expansions as ΞΌ , with scale 1 / Ξ“ ⁑ ( j + 1 + ΞΌ ) , j = 0 , 1 , 2 , ; compare §2.1(v). … β–ΊHere I and K are the modified Bessel functions10.25(ii)). … β–ΊFor the Bessel functions J and Y see §10.2(ii), and for the env functions associated with J and Y see §2.8(iv). … β–ΊFor convergent series expansions see Dunster (2004). … β–ΊSee also Olver (1997b, pp. 311–313) and §18.15(iii) for a generalized asymptotic expansion in terms of elementary functions for Legendre polynomials P n ⁑ ( cos ⁑ ΞΈ ) as n with ΞΈ fixed. …
    37: Bibliography V
    β–Ί
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • β–Ί
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • β–Ί
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • β–Ί
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • β–Ί
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .
  • 38: 3.10 Continued Fractions
    β–ΊEvery convergent, asymptotic, or formal seriesβ–ΊFor several special functions the S -fractions are known explicitly, but in any case the coefficients a n can always be calculated from the power-series coefficients by means of the quotient-difference algorithm; see Table 3.10.1. … β–ΊFor applications to Bessel functions and Whittaker functions (Chapters 10 and 13), see Gargantini and Henrici (1967). … β–ΊWe say that it is associated with the formal power series f ⁒ ( z ) in (3.10.7) if the expansion of its n th convergent C n in ascending powers of z , agrees with (3.10.7) up to and including the term in z 2 ⁒ n 1 , n = 1 , 2 , 3 , . … β–ΊIn Gautschi (1979c) the forward series algorithm is used for the evaluation of a continued fraction of an incomplete gamma function (see §8.9). …
    39: Bibliography T
    β–Ί
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • β–Ί
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • β–Ί
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • β–Ί
  • N. M. Temme (1994b) Computational aspects of incomplete gamma functions with large complex parameters. In Approximation and Computation. A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
  • β–Ί
  • I. J. Thompson and A. R. Barnett (1986) Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 64 (2), pp. 490–509.
  • 40: Bibliography C
    β–Ί
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • β–Ί
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • β–Ί
  • C. W. Clenshaw (1957) The numerical solution of linear differential equations in Chebyshev series. Proc. Cambridge Philos. Soc. 53 (1), pp. 134–149.
  • β–Ί
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function J n ⁒ ( z ) in the complex plane. Math. Comp. 40 (161), pp. 343–366.
  • β–Ί
  • R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997) A sequence of series for the Lambert W function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.