About the Project

error%20bounds

AdvancedHelp

(0.002 seconds)

1—10 of 16 matching pages

1: Bibliography N
  • G. Nemes (2017a) Error bounds for the asymptotic expansion of the Hurwitz zeta function. Proc. A. 473 (2203), pp. 20170363, 16.
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • G. Nemes (2015a) Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal. Proc. Roy. Soc. Edinburgh Sect. A 145 (3), pp. 571–596.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • 2: Bibliography S
  • F. W. Schäfke and A. Finsterer (1990) On Lindelöf’s error bound for Stirling’s series. J. Reine Angew. Math. 404, pp. 135–139.
  • P. N. Shivakumar and R. Wong (1988) Error bounds for a uniform asymptotic expansion of the Legendre function P n m ( cosh z ) . Quart. Appl. Math. 46 (3), pp. 473–488.
  • F. Stenger (1966a) Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 167–186.
  • F. Stenger (1966b) Error bounds for asymptotic solutions of differential equations. II. The general case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 187–210.
  • A. Strecok (1968) On the calculation of the inverse of the error function. Math. Comp. 22 (101), pp. 144–158.
  • 3: Bibliography F
  • H. E. Fettis, J. C. Caslin, and K. R. Cramer (1973) Complex zeros of the error function and of the complementary error function. Math. Comp. 27 (122), pp. 401–407.
  • C. L. Frenzen and R. Wong (1985b) A uniform asymptotic expansion of the Jacobi polynomials with error bounds. Canad. J. Math. 37 (5), pp. 979–1007.
  • C. L. Frenzen (1987a) Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18 (3), pp. 890–896.
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • 4: 30.9 Asymptotic Approximations and Expansions
    2 20 β 5 = 527 q 7 61529 q 5 10 43961 q 3 22 41599 q + 32 m 2 ( 5739 q 5 + 1 27550 q 3 + 2 98951 q ) 2048 m 4 ( 355 q 3 + 1505 q ) + 65536 m 6 q .
    For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). … For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
    5: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • F. W. J. Olver (1976) Improved error bounds for second-order differential equations with two turning points. J. Res. Nat. Bur. Standards Sect. B 80B (4), pp. 437–440.
  • F. W. J. Olver (1980a) Asymptotic approximations and error bounds. SIAM Rev. 22 (2), pp. 188–203.
  • 6: 12.10 Uniform Asymptotic Expansions for Large Parameter
    12.10.33 𝖠 s + 1 ( τ ) = 4 τ 2 ( τ + 1 ) 2 d d τ 𝖠 s ( τ ) 1 4 0 τ ( 20 u 2 + 20 u + 3 ) 𝖠 s ( u ) d u , s = 0 , 1 , 2 , ,
    𝖠 1 ( τ ) = 1 12 τ ( 20 τ 2 + 30 τ + 9 ) ,
    The proof of the double asymptotic property then follows with the aid of error bounds; compare §10.41(iv). …
    7: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • P. Baratella and L. Gatteschi (1988) The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials. In Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • W. G. C. Boyd (1993) Error bounds for the method of steepest descents. Proc. Roy. Soc. London Ser. A 440, pp. 493–518.
  • C. Brezinski (1999) Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21 (2), pp. 764–781.
  • K. R. Brownstein (2000) Criterion for Existence of a Bound State In One Dimension. American Journal of Physics 68 (2), pp. 160–161.
  • 8: Errata
    For confirmed errors, the Editors have made the corrections listed here. …
  • Equation (7.2.3)

    Originally named as a complementary error function, w ( z ) has been renamed as the Faddeeva (or Faddeyeva) function.

  • Subsection 9.7(iii)

    Bounds have been sharpened. The second paragraph now reads, “The n th error term is bounded in magnitude by the first neglected term multiplied by χ ( n + σ ) + 1 where σ = 1 6 for (9.7.7) and σ = 0 for (9.7.8), provided that n 0 in the first case and n 1 in the second case.” Previously it read, “In (9.7.7) and (9.7.8) the n th error term is bounded in magnitude by the first neglected term multiplied by 2 χ ( n ) exp ( σ π / ( 72 ζ ) ) where σ = 5 for (9.7.7) and σ = 7 for (9.7.8), provided that n 1 in both cases.” In Equation (9.7.16)

    9.7.16
    Bi ( x ) e ξ π x 1 / 4 ( 1 + ( χ ( 7 6 ) + 1 ) 5 72 ξ ) ,
    Bi ( x ) x 1 / 4 e ξ π ( 1 + ( π 2 + 1 ) 7 72 ξ ) ,

    the bounds on the right-hand sides have been sharpened. The factors ( χ ( 7 6 ) + 1 ) 5 72 ξ , ( π 2 + 1 ) 7 72 ξ , were originally given by 5 π 72 ξ exp ( 5 π 72 ξ ) , 7 π 72 ξ exp ( 7 π 72 ξ ) , respectively.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equations (18.16.12), (18.16.13)

    The upper and lower bounds given have been replaced with stronger bounds.

  • 9: 7.8 Inequalities
    §7.8 Inequalities
    7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
    7.8.8 erf x < 1 e 4 x 2 / π , x > 0 .
    10: Bibliography G
  • R. D. M. Garashchuk and J. C. Light (2001) Quasirandom distributed bases for bound problems. J. Chem. Phys. 114 (9), pp. 3929–3939.
  • L. Gatteschi (2002) Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144 (1-2), pp. 7–27.
  • W. Gautschi (1970) Efficient computation of the complex error function. SIAM J. Numer. Anal. 7 (1), pp. 187–198.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • R. G. Gordon (1968) Error bounds in equilibrium statistical mechanics. J. Math. Phys. 9, pp. 655–663.