About the Project

buying trazodone canada online order 365-RX.com/?id=1738

AdvancedHelp

(0.013 seconds)

11—20 of 282 matching pages

11: Roderick S. C. Wong
Wong was elected a Fellow of the Royal Society of Canada in 1993, a Foreign Member of the Academy of Science of Turin, Italy, in 2001, a Chevalier dans l’Ordre National de la Légion d’Honneur in 2004, and a Member of the European Academy of Sciences in 2007. He was recipient of the Killam Research Fellowship from the Canada Council in 1982–1984, and of the Rh Award for Outstanding Contributions to Scholarship and Research from the University of Manitoba in 1984. …
12: Errata
The specific updates to Chapter 1 include the addition of an entirely new subsection §1.18 entitled “Linear Second Order Differential Operators and Eigenfunction Expansions” which is a survey of the formal spectral analysis of second order differential operators. …
  • Subsection 25.10(ii)

    In the paragraph immediately below (25.10.4), it was originally stated that “more than one-third of all zeros in the critical strip lie on the critical line.” which referred to Levinson (1974). This sentence has been updated with “one-third” being replaced with “41%” now referring to Bui et al. (2011) (suggested by Gergő Nemes on 2021-08-23).

  • Equation (3.3.34)

    In the online version, the leading divided difference operators were previously omitted from these formulas, due to programming error.

    Reported by Nico Temme on 2021-06-01

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • References

    Bibliographic citations were added in §§3.5(iv), 4.44, 8.22(ii), 22.4(i), and minor clarifications were made in §§19.12, 20.7(vii), 22.9(i). In addition, several minor improvements were made affecting only ancilliary documents and links in the online version.

  • 13: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • J. LeCaine (1945) A table of integrals involving the functions E n ( x ) .
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • E. R. Love (1972a) Addendum to: “Changing the order of integration”. J. Austral. Math. Soc. 14, pp. 383–384.
  • D. W. Lozier and F. W. J. Olver (1994) Numerical Evaluation of Special Functions. In Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (Vancouver, BC, 1993), Proc. Sympos. Appl. Math., Vol. 48, pp. 79–125.
  • 14: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • Y. Ikebe, Y. Kikuchi, and I. Fujishiro (1991) Computing zeros and orders of Bessel functions. J. Comput. Appl. Math. 38 (1-3), pp. 169–184.
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • 15: Bibliography C
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990a) An algorithm for exponential integrals of real order. Computing 45 (3), pp. 269–276.
  • J. A. Cochran (1965) The zeros of Hankel functions as functions of their order. Numer. Math. 7 (3), pp. 238–250.
  • Combinatorial Object Server (website) Department of Computer Science, University of Victoria, Canada.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • 16: Bibliography M
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • B. M. McCoy (1992) Spin Systems, Statistical Mechanics and Painlevé Functions. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 377–391.
  • J. C. P. Miller (1950) On the choice of standard solutions for a homogeneous linear differential equation of the second order. Quart. J. Mech. Appl. Math. 3 (2), pp. 225–235.
  • M. E. Muldoon (1979) On the zeros of a cross-product of Bessel functions of different orders. Z. Angew. Math. Mech. 59 (6), pp. 272–273.
  • M. E. Muldoon (1981) The variation with respect to order of zeros of Bessel functions. Rend. Sem. Mat. Univ. Politec. Torino 39 (2), pp. 15–25.
  • 17: Possible Errors in DLMF
    Errors in the printed Handbook may already have been corrected in the online version; please consult Errata. …
    18: Bibliography U
  • Unpublished Mathematical Tables (1944) Mathematics of Computation Unpublished Mathematical Tables Collection.
  • F. Ursell (1984) Integrals with a large parameter: Legendre functions of large degree and fixed order. Math. Proc. Cambridge Philos. Soc. 95 (2), pp. 367–380.
  • 19: Bibliography J
  • J. H. Johnson and J. M. Blair (1973) REMES2 — a Fortran program to calculate rational minimax approximations to a given function. Technical Report Technical Report AECL-4210, Atomic Energy of Canada Limited. Chalk River Nuclear Laboratories, Chalk River, Ontario.
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • 20: Publications
  • B. V. Saunders and Q. Wang (2000) From 2D to 3D: Numerical Grid Generation and the Visualization of Complex Surfaces, Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, Whistler, British Columbia, Canada, September 25-28, 2000. PDF