About the Project

Laplace equation

AdvancedHelp

(0.002 seconds)

31—36 of 36 matching pages

31: Bibliography D
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • B. Deconinck and H. Segur (1998) The KP equation with quasiperiodic initial data. Phys. D 123 (1-4), pp. 123–152.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • 32: 10.32 Integral Representations
    10.32.13 K ν ( z ) = ( 1 2 z ) ν 4 π i c i c + i Γ ( t ) Γ ( t ν ) ( 1 2 z ) 2 t d t , c > max ( ν , 0 ) , | ph z | < 1 2 π .
    10.32.16 I μ ( x ) K ν ( x ) = 0 J μ ± ν ( 2 x sinh t ) e ( μ ± ν ) t d t , ( μ ν ) > 1 2 , ( μ ± ν ) > 1 , x > 0 .
    33: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • 34: Bibliography T
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • E. C. Titchmarsh (1946) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 35: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992a) Integrals and Series: Direct Laplace Transforms, Vol. 4. Gordon and Breach Science Publishers, New York.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1992b) Integrals and Series: Inverse Laplace Transforms, Vol. 5. Gordon and Breach Science Publishers, New York.
  • 36: 10.22 Integrals
    10.22.37 0 1 t J ν ( j ν , t ) J ν ( j ν , m t ) d t = 1 2 ( J ν ( j ν , ) ) 2 δ , m ,
    10.22.38 0 1 t J ν ( α t ) J ν ( α m t ) d t = ( a 2 b 2 + α 2 ν 2 ) ( J ν ( α ) ) 2 2 α 2 δ , m ,
    10.22.49 0 t μ 1 e a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; b 2 a 2 ) , ( μ + ν ) > 0 , ( a ± i b ) > 0 ,
    10.22.66 0 e a t J ν ( b t ) J ν ( c t ) d t = 1 π ( b c ) 1 2 Q ν 1 2 ( a 2 + b 2 + c 2 2 b c ) , ν > 1 2 .
    Equation (10.22.70) also remains valid if the order ν + 1 of the J functions on both sides is replaced by ν + 2 n 3 , n = 1 , 2 , , and the constraint ν > 3 2 is replaced by ν > n + 1 2 . …