About the Project

Fourier coefficients

AdvancedHelp

(0.002 seconds)

31—39 of 39 matching pages

31: Bibliography C
  • S. M. Candel (1981) An algorithm for the Fourier-Bessel transform. Comput. Phys. Comm. 23 (4), pp. 343–353.
  • H. S. Carslaw (1930) Introduction to the Theory of Fourier’s Series and Integrals. 3rd edition, Macmillan, London.
  • I. Cherednik (1995) Macdonald’s evaluation conjectures and difference Fourier transform. Invent. Math. 122 (1), pp. 119–145.
  • W. W. Clendenin (1966) A method for numerical calculation of Fourier integrals. Numer. Math. 8 (5), pp. 422–436.
  • J. W. Cooley and J. W. Tukey (1965) An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (90), pp. 297–301.
  • 32: 29.6 Fourier Series
    §29.6 Fourier Series
    with α p , β p , and γ p as in (29.3.11) and (29.3.12), and … An alternative version of the Fourier series expansion (29.6.1) is given by … with α p , β p , and γ p as in (29.3.13) and (29.3.14), and
    29.6.20 p = 0 A 2 p + 1 2 = 1 ,
    33: Errata
  • Section 16.11(i)

    A sentence indicating that explicit representations for the coefficients c k are given in Volkmer (2023) was inserted just below (16.11.5).

  • Additions

    Equations: (3.3.3_1), (3.3.3_2), (5.15.9) (suggested by Calvin Khor on 2021-09-04), (8.15.2), Pochhammer symbol representation in (10.17.1) for a k ( ν ) coefficient, Pochhammer symbol representation in (11.9.4) for a k ( μ , ν ) coefficient, and (12.14.4_5).

  • Section 1.14

    There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

    Transform New Abbreviated Old
    Notation Notation Notation
    Fourier ( f ) ( x ) f ( x )
    Fourier Cosine c ( f ) ( x ) c f ( x )
    Fourier Sine s ( f ) ( x ) s f ( x )
    Laplace ( f ) ( s ) f ( s ) ( f ( t ) ; s )
    Mellin ( f ) ( s ) f ( s ) ( f ; s )
    Hilbert ( f ) ( s ) f ( s ) ( f ; s )
    Stieltjes 𝒮 ( f ) ( s ) 𝒮 f ( s ) 𝒮 ( f ; s )

    Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.

  • Subsection 1.16(vii)

    Several changes have been made to

    1. (i)

      make consistent use of the Fourier transform notations ( f ) , ( ϕ ) and ( u ) where f is a function of one real variable, ϕ is a test function of n variables associated with tempered distributions, and u is a tempered distribution (see (1.14.1), (1.16.29) and (1.16.35));

    2. (ii)

      introduce the partial differential operator 𝐃 in (1.16.30);

    3. (iii)

      clarify the definition (1.16.32) of the partial differential operator P ( 𝐃 ) ; and

    4. (iv)

      clarify the use of P ( 𝐃 ) and P ( 𝐱 ) in (1.16.33), (1.16.34), (1.16.36) and (1.16.37).

  • Subsection 1.16(viii)

    An entire new Subsection 1.16(viii) Fourier Transforms of Special Distributions, was contributed by Roderick Wong.

  • 34: Bibliography Z
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • Ya. M. Zhileĭkin and A. B. Kukarkin (1995) A fast Fourier-Bessel transform algorithm. Zh. Vychisl. Mat. i Mat. Fiz. 35 (7), pp. 1128–1133 (Russian).
  • H. S. Zuckerman (1939) The computation of the smaller coefficients of J ( τ ) . Bull. Amer. Math. Soc. 45 (12), pp. 917–919.
  • 35: 30.15 Signal Analysis
    30.15.2 Λ n = 2 γ π ( K n 0 ( γ ) A n 0 ( γ 2 ) ) 2 ;
    §30.15(iii) Fourier Transform
    Equations (30.15.4) and (30.15.6) show that the functions ϕ n are σ -bandlimited, that is, their Fourier transform vanishes outside the interval [ σ , σ ] . …
    36: 18.2 General Orthogonal Polynomials
    Then, with the coefficients (18.2.11_4) associated with the monic OP’s p n , the orthonormal recurrence relation for q n takes the form … The monic and orthonormal OP’s, and their determination via recursion, are more fully discussed in §§3.5(v) and 3.5(vi), where modified recursion coefficients are listed for the classical OP’s in their monic and orthonormal forms. … The recurrence coefficients α n and β n in (18.2.11_5) can be expressed in terms of the determinants (18.2.27) and (18.2.28) by …Alternatives for numerical calculation of the recursion coefficients in terms of the moments are discussed in these references, and in §18.40(ii). … for certain coefficients a n , j with s , t independent of n . …
    37: 18.3 Definitions
    Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
    Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
    For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
    38: Bibliography O
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 39: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • M. Reed and B. Simon (1975) Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness. Academic Press, New York.
  • M. Rothman (1954a) Tables of the integrals and differential coefficients of Gi ( + x ) and Hi ( x ) . Quart. J. Mech. Appl. Math. 7 (3), pp. 379–384.