About the Project

.02%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E6%B2%99%E7%89%B9%E5%B0%8F%E7%BB%84%E8%B5%9B%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B6%B3%E5%BD%A9%E7%8E%A9%E6%B3%95%E8%A7%84%E5%88%99.m6q3s2-oeoo02w0g

AdvancedHelp

(0.019 seconds)

21—30 of 737 matching pages

21: 27.2 Functions
27.2.9 d ( n ) = d | n 1
It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
22: 7.14 Integrals
7.14.1 0 e 2 i a t erfc ( b t ) d t = 1 a π F ( a b ) + i 2 a ( 1 e ( a / b ) 2 ) , a , | ph b | < 1 4 π .
7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
7.14.7 0 e a t C ( 2 t π ) d t = ( a 2 + 1 + a ) 1 2 2 a a 2 + 1 , a > 0 ,
For collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
23: Bibliography F
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • C. K. Frederickson and P. L. Marston (1994) Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface. J. Acoust. Soc. Amer. 95 (2), pp. 650–660.
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • 24: 9.8 Modulus and Phase
    In terms of Bessel functions, and with ξ = 2 3 | x | 3 / 2 , …
    9.8.20 M 2 ( x ) 1 π ( x ) 1 / 2 k = 0 1 3 5 ( 6 k 1 ) k ! ( 96 ) k 1 x 3 k ,
    9.8.21 N 2 ( x ) ( x ) 1 / 2 π k = 0 1 3 5 ( 6 k 1 ) k ! ( 96 ) k 1 + 6 k 1 6 k 1 x 3 k ,
    9.8.22 θ ( x ) π 4 + 2 3 ( x ) 3 / 2 ( 1 + 5 32 1 x 3 + 1105 6144 1 x 6 + 82825 65536 1 x 9 + 12820 31525 587 20256 1 x 12 + ) ,
    9.8.23 ϕ ( x ) π 4 + 2 3 ( x ) 3 / 2 ( 1 7 32 1 x 3 1463 6144 1 x 6 4 95271 3 27680 1 x 9 2065 30429 83 88608 1 x 12 ) .
    25: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001) Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31 (1-2), pp. 8996.
  • 26: 4.40 Integrals
    Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
    27: 9.9 Zeros
    They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. …
    9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
    9.9.7 Ai ( a k ) = ( 1 ) k 1 V ( 3 8 π ( 4 k 1 ) ) ,
    9.9.10 b k = T ( 3 8 π ( 4 k 3 ) ) ,
    9.9.21 W ( t ) π 1 / 2 t 1 / 6 ( 1 7 96 t 2 + 1673 6144 t 4 843 94709 265 42080 t 6 + 78 02771 35421 1 01921 58720 t 8 20444 90510 51945 6 52298 15808 t 10 + ) .
    28: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • L. Jager (1998) Fonctions de Mathieu et fonctions propres de l’oscillateur relativiste. Ann. Fac. Sci. Toulouse Math. (6) 7 (3), pp. 465–495 (French).
  • S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel (1993) The birth of the giant component. Random Structures Algorithms 4 (3), pp. 231–358.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
  • 29: Bibliography G
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • G. Gasper (1977) Positive sums of the classical orthogonal polynomials. SIAM J. Math. Anal. 8 (3), pp. 423–447.
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • 30: Bibliography P
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • M. D. Perlman and I. Olkin (1980) Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8 (6), pp. 1326–1341.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 92–96.