About the Project

.卡塔尔世界杯奖金_『网址:687.vii』世界杯竞猜_b5p6v3_2022年11月30日21时49分53秒_3vjzhlfvb.cc

AdvancedHelp

(0.004 seconds)

11—20 of 231 matching pages

11: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • N. M. Temme (2015) Asymptotic Methods for Integrals. Series in Analysis, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 12: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton and G. Peach (1962) The determination of phases of wave functions. Proc. Phys. Soc. 79 (6), pp. 1296–1297.
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • B. Simon (1995) Operators with Singular Continuous Spectrum: I. General Operators. Annals of Mathematics 141 (1), pp. 131–145.
  • 13: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). …
    12.10.23 η = 1 2 arccos t 1 2 t 1 t 2 ,
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .
    12.10.41 t = 1 + w 1 10 w 2 + 11 350 w 3 823 63000 w 4 + 1 50653 242 55000 w 5 + , | ζ | < ( 3 4 π ) 2 3 .
    14: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • E. Kamke (1977) Differentialgleichungen: Lösungsmethoden und Lösungen. Teil I. B. G. Teubner, Stuttgart (German).
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • C. Kittel (1996) Introduction to Solid State Physics. 7th Edition edition, John Wiley and Sons, New York.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • 15: Bibliography P
  • J. B. Parkinson (1969) Optical properties of layer antiferromagnets with K 2 NiF 4 structure. J. Phys. C: Solid State Physics 2 (11), pp. 2012–2021.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 16: Bibliography M
  • A. J. MacLeod (2002a) Asymptotic expansions for the zeros of certain special functions. J. Comput. Appl. Math. 145 (2), pp. 261–267.
  • C. S. Meijer (1946) On the G -function. VII, VIII. Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • L. Moser and M. Wyman (1958a) Asymptotic development of the Stirling numbers of the first kind. J. London Math. Soc. 33, pp. 133–146.
  • 17: 25.21 Software
    §25.21(vii) Fermi–Dirac and Bose–Einstein Integrals
    18: Software Index
    19: 3.6 Linear Difference Equations
    In practice, however, problems of severe instability often arise and in §§3.6(ii)3.6(vii) we show how these difficulties may be overcome. …
    Table 3.6.1: Weber function w n = 𝐄 n ( 1 ) computed by Olver’s algorithm.
    n p n e n e n / ( p n p n + 1 ) w n
    11 0.29154 738 ×10¹⁰ 0.37225 201 ×10¹⁰ 0.19952 026 ×10⁻¹⁰ 0.58373 946 ×10⁻¹
    §3.6(vii) Linear Difference Equations of Other Orders
    3.6.17 a n w n + 1 b n w n = d n .
    3.6.18 a n , k w n + k + a n , k 1 w n + k 1 + + a n , 0 w n = d n ,
    20: 1.9 Calculus of a Complex Variable
    §1.9(vii) Inversion of Limits
    1.9.66 z p , q = m = 0 p n = 0 q ζ m , n .
    1.9.69 a b n = 0 | f n ( t ) | d t < ,
    1.9.71 a b n = 0 f n ( t ) d t = n = 0 a b f n ( t ) d t .