About the Project

.%E7%BD%91%E7%BB%9C%E7%9B%B4%E6%92%AD%E4%B8%96%E7%95%8C%E6%9D%papp%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.2022%E4%B8%8B%E5%B1%8A%E4%B8%96%E7%95%8C%E6%9D%AF%E5%9C%A8%E5%93%AA%E4%B8%AA%E5%9B%BD%E5%AE%B6-m6q3s2-2022%E5%B9%411%E6%9C%882%E6%97%256%E6%97%623%E5%88%861%E7%A7%92wmcsgwckm.com

AdvancedHelp

The terms "amxsty.cc", "wmcsgwckm.com", "m6q3s2", "f.2022" were not found.Possible alternative terms: "0.02224", "accommod", "style".

(0.047 seconds)

1—10 of 754 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 19.2 Definitions
β–ΊThe integral for E ⁑ ( Ο• , k ) is well defined if k 2 = sin 2 ⁑ Ο• = 1 , and the Cauchy principal value (§1.4(v)) of Ξ  ⁑ ( Ο• , Ξ± 2 , k ) is taken if 1 Ξ± 2 ⁒ sin 2 ⁑ Ο• vanishes at an interior point of the integration path. … β–Ί
§19.2(iv) A Related Function: R C ⁑ ( x , y )
β–ΊFormulas involving Ξ  ⁑ ( Ο• , Ξ± 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ⁑ ( x , y ) . … β–ΊWhen x and y are positive, R C ⁑ ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : …For the special cases of R C ⁑ ( x , x ) and R C ⁑ ( 0 , y ) see (19.6.15). …
3: Bibliography H
β–Ί
  • P. I. HadΕΎi (1975b) Integrals containing the Fresnel functions S ⁒ ( x ) and C ⁒ ( x ) . Bul. Akad. Ε tiince RSS Moldoven. 1975 (3), pp. 48–60, 93 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976a) Expansions for the probability function in series of ČebyΕ‘ev polynomials and Bessel functions. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • β–Ί
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • β–Ί
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • β–Ί
  • T. E. Hull and A. Abrham (1986) Variable precision exponential function. ACM Trans. Math. Software 12 (2), pp. 79–91.
  • 4: Bibliography D
    β–Ί
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • β–Ί
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • β–Ί
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • β–Ί
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • β–Ί
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 5: 23.21 Physical Applications
    β–ΊThe Weierstrass function plays a similar role for cubic potentials in canonical form g 3 ⁑ + g 2 ⁑ ⁒ x 4 ⁒ x 3 . … β–ΊFor applications to soliton solutions of the Korteweg–de Vries (KdV) equation see McKean and Moll (1999, p. 91), Deconinck and Segur (2000), and Walker (1996, §8.1). … β–Ίwhere x , y , z are the corresponding Cartesian coordinates and e 1 ⁑ , e 2 ⁑ , e 3 ⁑ are constants. … β–Ί
    23.21.3 f ⁑ ( ρ ) = 2 ⁒ ( ( ρ e 1 ⁑ ) ⁒ ( ρ e 2 ⁑ ) ⁒ ( ρ e 3 ⁑ ) ) 1 / 2 .
    β–ΊAnother form is obtained by identifying e 1 ⁑ , e 2 ⁑ , e 3 ⁑ as lattice roots (§23.3(i)), and setting …
    6: 18.13 Continued Fractions
    β–Ί
    18.13.3 a 1 x + 1 2 3 2 ⁒ x + 2 3 5 3 ⁒ x + 3 4 7 4 ⁒ x + ⁒ β‹― ,
    β–Ί
    18.13.4 a 1 1 x + 1 2 1 2 ⁒ ( 3 x ) + 2 3 1 3 ⁒ ( 5 x ) + 3 4 1 4 ⁒ ( 7 x ) + ⁒ β‹― ,
    β–ΊSee also Cuyt et al. (2008, pp. 91–99).
    7: 24.2 Definitions and Generating Functions
    β–Ί
    B 2 ⁒ n + 1 = 0 ,
    β–Ί
    24.2.4 B n = B n ⁑ ( 0 ) ,
    β–Ί
    24.2.5 B n ⁑ ( x ) = k = 0 n ( n k ) ⁒ B k ⁒ x n k .
    β–Ί
    B ~ n ⁑ ( x ) = B n ⁑ ( x ) ,
    β–Ί
    B ~ n ⁑ ( x + 1 ) = B ~ n ⁑ ( x ) ,
    8: Bibliography R
    β–Ί
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • β–Ί
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • β–Ί
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • β–Ί
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • β–Ί
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 ⁒ j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • 9: Bibliography N
    β–Ί
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • β–Ί
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • β–Ί
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • β–Ί
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • β–Ί
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 10: Bibliography
    β–Ί
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • β–Ί
  • G. E. Andrews (1966a) On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2) 17, pp. 132–143.
  • β–Ί
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.