About the Project

.%E6%96%B0%E5%AE%9D2%E4%B8%96%E7%95%8C%E6%9D%AF%E7%BB%93%E6%9D%9F%E3%80%8E%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BD%A3%E9%87%91%E5%88%86%E7%BA%A255%25%EF%BC%8C%E5%92%A8%E8%AF%A2%E4%B8%93%E5%91%98%EF%BC%9A%40ky975%E3%80%8F.tbx-k2q1w9-2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B659%E5%88%8617%E7%A7%92

AdvancedHelp

Did you mean .%E6%96%B0%E5%AE%9D2%E4%B8%96%E7%95%8C%E6%9D%AF%E7%BB%93%E6%9D%9F%E3%80%8E%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BD%A3%E9%87%91%E5%88%86%E7%BA%255%25%EF%BC%8C%E5%92%A8%E8%AF%A2%E4%B8%93%E5%91%98%EF%BC%9A%40ky975%E3%80%8F.tbx-k2q1w9-2022%E5%B9%411%E6%9C%882%E6%97%254%E6%97%659%E5%88%86178%E7%A7%92 ?

(0.038 seconds)

1—10 of 626 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 26.5 Lattice Paths: Catalan Numbers
β–Ί C ⁑ ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ⁑ ( n ) are given in Stanley (1999, pp. 219–229).) … β–Ί
26.5.3 C ⁑ ( n + 1 ) = k = 0 n C ⁑ ( k ) ⁒ C ⁑ ( n k ) ,
β–Ί
26.5.4 C ⁑ ( n + 1 ) = 2 ⁒ ( 2 ⁒ n + 1 ) n + 2 ⁒ C ⁑ ( n ) ,
β–Ί
26.5.7 lim n C ⁑ ( n + 1 ) C ⁑ ( n ) = 4 .
3: 6.14 Integrals
β–Ί
6.14.1 0 e a ⁒ t ⁒ E 1 ⁑ ( t ) ⁒ d t = 1 a ⁒ ln ⁑ ( 1 + a ) , ⁑ a > 1 ,
β–Ί
6.14.4 0 E 1 2 ⁑ ( t ) ⁒ d t = 2 ⁒ ln ⁑ 2 ,
β–ΊFor collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 9698, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
4: 5.13 Integrals
5: 9.8 Modulus and Phase
β–Ί
9.8.20 M 2 ⁑ ( x ) 1 Ο€ ⁒ ( x ) 1 / 2 ⁒ k = 0 1 3 5 ⁒ β‹― ⁒ ( 6 ⁒ k 1 ) k ! ⁒ ( 96 ) k ⁒ 1 x 3 ⁒ k ,
β–Ί
9.8.21 N 2 ⁑ ( x ) ( x ) 1 / 2 Ο€ ⁒ k = 0 1 3 5 ⁒ β‹― ⁒ ( 6 ⁒ k 1 ) k ! ⁒ ( 96 ) k ⁒ 1 + 6 ⁒ k 1 6 ⁒ k ⁒ 1 x 3 ⁒ k ,
β–Ί
9.8.22 ΞΈ ⁑ ( x ) Ο€ 4 + 2 3 ⁒ ( x ) 3 / 2 ⁒ ( 1 + 5 32 ⁒ 1 x 3 + 1105 6144 ⁒ 1 x 6 + 82825 65536 ⁒ 1 x 9 + 12820 31525 587 20256 ⁒ 1 x 12 + β‹― ) ,
β–Ί
9.8.23 Ο• ⁑ ( x ) Ο€ 4 + 2 3 ⁒ ( x ) 3 / 2 ⁒ ( 1 7 32 ⁒ 1 x 3 1463 6144 ⁒ 1 x 6 4 95271 3 27680 ⁒ 1 x 9 2065 30429 83 88608 ⁒ 1 x 12 β‹― ) .
β–ΊAlso, approximate values (25S) of the coefficients of the powers x 15 , x 18 , , x 56 are available in Sherry (1959). …
6: 33.20 Expansions for Small | Ο΅ |
β–Ίwhere β–Ί
33.20.4 π–₯ k ⁑ ( β„“ ; r ) = p = 2 ⁒ k 3 ⁒ k ( 2 ⁒ r ) ( p + 1 ) / 2 ⁒ C k , p ⁒ J 2 ⁒ β„“ + 1 + p ⁑ ( 8 ⁒ r ) , r > 0 ,
β–ΊThe functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … β–Ίwhere A ⁑ ( Ο΅ , β„“ ) is given by (33.14.11), (33.14.12), and …The functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
7: 7.14 Integrals
β–Ί
7.14.1 0 e 2 ⁒ i ⁒ a ⁒ t ⁒ erfc ⁑ ( b ⁒ t ) ⁒ d t = 1 a ⁒ Ο€ ⁒ F ⁑ ( a b ) + i 2 ⁒ a ⁒ ( 1 e ( a / b ) 2 ) , a β„‚ , | ph ⁑ b | < 1 4 ⁒ Ο€ .
β–Ί
7.14.5 0 e a ⁒ t ⁒ C ⁑ ( t ) ⁒ d t = 1 a ⁒ f ⁑ ( a Ο€ ) , ⁑ a > 0 ,
β–Ί
7.14.7 0 e a ⁒ t ⁒ C ⁑ ( 2 ⁒ t Ο€ ) ⁒ d t = ( a 2 + 1 + a ) 1 2 2 ⁒ a ⁒ a 2 + 1 , ⁑ a > 0 ,
β–ΊFor collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
8: 4.40 Integrals
β–ΊExtensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
9: Bibliography H
β–Ί
  • P. I. HadΕΎi (1975a) Certain integrals that contain a probability function. Bul. Akad. Ε tiince RSS Moldoven. 1975 (2), pp. 8688, 95 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976a) Expansions for the probability function in series of ČebyΕ‘ev polynomials and Bessel functions. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • β–Ί
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • 10: 27.2 Functions
    β–Ί
    27.2.9 d ⁑ ( n ) = d | n 1
    β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
    Table 27.2.2: Functions related to division.
    β–Ί β–Ίβ–Ίβ–Ί
    n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    β–Ί