About the Project

%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E5%AE%98%E7%BD%91,%E3%80%90%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%8A%95%E6%B3%A8%E7%BD%91%E5%9D%80%E2%88%B63399yule.com%E3%80%91%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E8%B5%8C%E7%90%83%E5%B9%B3%E5%8F%B0,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2app,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2%E6%98%AF%E4%BB%80%E4%B9%88,%E6%B2%99%E5%B7%B4%E4%BD%93%E8%82%B2api,%E6%B2%99%E5%B7%B4%E4%B9%B0%E7%90%83%E5%B9%B3%E5%8F%B0%E3%80%90%E8%B5%8C%E7%90%83%E7%BD%91%E7%AB%99%E2%88%B63399yule.com%E3%80%91

AdvancedHelp

(0.041 seconds)

11—20 of 729 matching pages

11: 19.37 Tables
Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). … Tabulated (with different notation) for ϕ = 0 ( 15 ) 90 , α 2 = 0 ( .1 ) 1 , arcsin k = 0 ( 15 ) 90 to 5D by Abramowitz and Stegun (1964, Chapter 17), and for ϕ = 0 ( 15 ) 90 , α 2 = 0 ( .1 ) 1 , arcsin k = 0 ( 15 ) 90 to 7D by Zhang and Jin (1996, pp. 676–677). Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). …
12: 34.4 Definition: 6 j Symbol
The 6 j symbol can be expressed as the finite sum …
34.4.3 { j 1 j 2 j 3 l 1 l 2 l 3 } = ( 1 ) j 1 + j 3 + l 1 + l 3 Δ ( j 1 j 2 j 3 ) Δ ( j 2 l 1 l 3 ) ( j 1 j 2 + l 1 + l 2 ) ! ( j 2 + j 3 + l 2 + l 3 ) ! ( j 1 + j 3 + l 1 + l 3 + 1 ) ! Δ ( j 1 l 2 l 3 ) Δ ( j 3 l 1 l 2 ) ( j 1 j 2 + j 3 ) ! ( j 2 + l 1 + l 3 ) ! ( j 1 + l 2 + l 3 + 1 ) ! ( j 3 + l 1 + l 2 + 1 ) ! F 3 4 ( j 1 + j 2 j 3 , j 2 l 1 l 3 , j 1 l 2 l 3 1 , j 3 l 1 l 2 1 j 1 + j 2 l 1 l 2 , j 2 j 3 l 2 l 3 , j 1 j 3 l 1 l 3 1 ; 1 ) ,
where F 3 4 is defined as in §16.2. For alternative expressions for the 6 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 3 4 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).
13: Bibliography L
  • D. F. Lawden (1989) Elliptic Functions and Applications. Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
  • D. H. Lehmer (1940) On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47 (8), pp. 533–538.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • X. Li and R. Wong (2001) On the asymptotics of the Meixner-Pollaczek polynomials and their zeros. Constr. Approx. 17 (1), pp. 59–90.
  • N. A. Lukaševič (1968) Solutions of the fifth Painlevé equation. Differ. Uravn. 4 (8), pp. 1413–1420 (Russian).
  • 14: Bibliography M
  • P. Martín, R. Pérez, and A. L. Guerrero (1992) Two-point quasi-fractional approximations to the Airy function Ai ( x ) . J. Comput. Phys. 99 (2), pp. 337–340.
  • L. C. Maximon (1955) On the evaluation of indefinite integrals involving the special functions: Application of method. Quart. Appl. Math. 13, pp. 84–93.
  • P. Midy (1975) An improved calculation of the general elliptic integral of the second kind in the neighbourhood of x = 0 . Numer. Math. 25 (1), pp. 99–101.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • 15: 34.5 Basic Properties: 6 j Symbol
    For further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 9899). … Equation (34.5.23) can be regarded as an alternative definition of the 6 j symbol. …
    16: Bibliography G
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • W. Gautschi (1967) Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1), pp. 24–82.
  • A. Gil, J. Segura, and N. M. Temme (2012) An improved algorithm and a Fortran 90 module for computing the conical function P 1 / 2 + i τ m ( x ) . Comput. Phys. Commun. 183 (3), pp. 794–799.
  • K. Goldberg, F. T. Leighton, M. Newman, and S. L. Zuckerman (1976) Tables of binomial coefficients and Stirling numbers. J. Res. Nat. Bur. Standards Sect. B 80B (1), pp. 99–171.
  • 17: 27.2 Functions
    Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …( ν ( 1 ) is defined to be 0.) …It can be expressed as a sum over all primes p x : … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. …
    18: Bibliography S
  • C. W. Schelin (1983) Calculator function approximation. Amer. Math. Monthly 90 (5), pp. 317–325.
  • B. I. Schneider, J. Segura, A. Gil, X. Guan, and K. Bartschat (2010) A new Fortran 90 program to compute regular and irregular associated Legendre functions. Comput. Phys. Comm. 181 (12), pp. 2091–2097.
  • D. C. Shaw (1985) Perturbational results for diffraction of water-waves by nearly-vertical barriers. IMA J. Appl. Math. 34 (1), pp. 99–117.
  • L. Shen (1981) The elliptical microstrip antenna with circular polarization. IEEE Trans. Antennas and Propagation 29 (1), pp. 90–94.
  • D. M. Smith (2001) Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. ACM Trans. Math. Software 27 (4), pp. 377–387.
  • 19: 19.9 Inequalities
    Further inequalities for K ( k ) and E ( k ) can be found in Alzer and Qiu (2004), Anderson et al. (1992a, b, 1997), and Qiu and Vamanamurthy (1996). … Even for the extremely eccentric ellipse with a = 99 and b = 1 , this is correct within 0. … Sharper inequalities for F ( ϕ , k ) are: … Inequalities for both F ( ϕ , k ) and E ( ϕ , k ) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). … Other inequalities for F ( ϕ , k ) can be obtained from inequalities for R F ( x , y , z ) given in Carlson (1966, (2.15)) and Carlson (1970) via (19.25.5).
    20: 19.21 Connection Formulas
    Legendre’s relation (19.7.1) can be written … The complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). … The complete case of R J can be expressed in terms of R F and R D : … Because R G is completely symmetric, x , y , z can be permuted on the right-hand side of (19.21.10) so that ( x z ) ( y z ) 0 if the variables are real, thereby avoiding cancellations when R G is calculated from R F and R D (see §19.36(i)). … Connection formulas for R a ( 𝐛 ; 𝐳 ) are given in Carlson (1977b, pp. 99, 101, and 123–124). …