About the Project

www.RxLara.net - Hydroxychloroquine sulfate 200mg tablet price. How to Buy Plaquenil Online. visit RXLARA.NET

AdvancedHelp

(0.005 seconds)

21—30 of 864 matching pages

21: Foreword
That 1046-page tome proved to be an invaluable reference for the many scientists and engineers who use the special functions of applied mathematics in their day-to-day work, so much so that it became the most widely distributed and most highly cited NIST publication in the first 100 years of the institution’s existence. … However, we have also seen the birth of a new age of computing technology, which has not only changed how we utilize special functions, but also how we communicate technical information. The document you are now holding, or the Web page you are now reading, represents an effort to extend the legacy of A&S well into the 21st century. …The online version, the NIST Digital Library of Mathematical Functions (DLMF), presents the same technical information along with extensions and innovative interactive features consistent with the new medium. … Particular attention is called to the generous support of the National Science Foundation, which made possible the participation of experts from academia and research institutes worldwide. …
22: How to Cite
How to Cite
When citing DLMF from a formal publication, we suggest a format similar to the following: … The direct correspondence between the reference numbers in the printed Handbook and the permalinks used online in the DLMF enables readers of either version to cite specific items and their readers to easily look them up again — in either version! The following table outlines the correspondence between reference numbers as they appear in the Handbook, and the URL’s that find the same item online. Note the ‘E’, ‘F’ and ‘T’ used to disambiguate equations, figures and tables. …
23: About MathML
, built-in to the browser) support for MathML is growing, (see Browsers supporting MathML). However, the MathJax javascript library can also used to render the MathML, albeit more slowly. By default, DLMF will use Native support when available; You may choose how MathML is processed (Native or MathJax) at Customize DLMF. In rare cases, a browser lacks both MathML support and a robust enough javascript implementation capable of running MathJax; you may wish to visit the Customize DLMF page and choose the HTML+images document format. … Of course you are encouraged to use a modern, up-to-date browser. …
24: 25 Zeta and Related Functions
25: 13.5 Continued Fractions
This continued fraction converges to the meromorphic function of z on the left-hand side everywhere in . For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980). … This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector | ph z | < π . …
26: 13.17 Continued Fractions
This continued fraction converges to the meromorphic function of z on the left-hand side for all z . For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980). … This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector | ph z | < π . …
27: 33.21 Asymptotic Approximations for Large | r |
We indicate here how to obtain the limiting forms of f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r ) as r ± , with ϵ and fixed, in the following cases:
  • (a)

    When r ± with ϵ > 0 , Equations (33.16.4)–(33.16.7) are combined with (33.10.1).

  • (b)

    When r ± with ϵ < 0 , Equations (33.16.10)–(33.16.13) are combined with

    33.21.1
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r ,
    33.21.2
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r .

    Corresponding approximations for s ( ϵ , ; r ) and c ( ϵ , ; r ) as r can be obtained via (33.16.17), and as r via (33.16.18).

  • (c)

    When r ± with ϵ = 0 , combine (33.20.1), (33.20.2) with §§10.7(ii), 10.30(ii).

  • For asymptotic expansions of f ( ϵ , ; r ) and h ( ϵ , ; r ) as r ± with ϵ and fixed, see Curtis (1964a, §6).
    28: 29.7 Asymptotic Expansions
    As ν , …
    29.7.5 b ν m + 1 ( k 2 ) a ν m ( k 2 ) = O ( ν m + 3 2 ( 1 k 1 + k ) ν ) , ν .
    Müller (1966a, b) found three formal asymptotic expansions for a fundamental system of solutions of (29.2.1) (and (29.11.1)) as ν , one in terms of Jacobian elliptic functions and two in terms of Hermite polynomials. In Müller (1966c) it is shown how these expansions lead to asymptotic expansions for the Lamé functions 𝐸𝑐 ν m ( z , k 2 ) and 𝐸𝑠 ν m ( z , k 2 ) . Weinstein and Keller (1985) give asymptotics for solutions of Hill’s equation (§28.29(i)) that are applicable to the Lamé equation.
    29: Bibliography S
  • R. B. Shirts (1993b) Algorithm 721: MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu’s differential equation for noninteger and integer order. ACM Trans. Math. Software 19 (3), pp. 391–406.
  • G. S. Smith (1997) An Introduction to Classical Electromagnetic Radiation. Cambridge University Press, Cambridge-New York.
  • I. A. Stegun and R. Zucker (1976) Automatic computing methods for special functions. III. The sine, cosine, exponential integrals, and related functions. J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 291–311.
  • R. S. Strichartz (1994) A Guide to Distribution Theory and Fourier Transforms. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 30: 18.40 Methods of Computation
    A numerical approach to the recursion coefficients and quadrature abscissas and weights
    See Gautschi (1983) for examples of numerically stable and unstable use of the above recursion relations, and how one can then usefully differentiate between numerical results of low and high precision, as produced thereby. Having now directly connected computation of the quadrature abscissas and weights to the moments, what follows uses these for a Stieltjes–Perron inversion to regain w ( x ) . … The question is then: how is this possible given only F N ( z ) , rather than F ( z ) itself? F N ( z ) often converges to smooth results for z off the real axis for z at a distance greater than the pole spacing of the x n , this may then be followed by approximate numerical analytic continuation via fitting to lower order continued fractions (either Padé, see §3.11(iv), or pointwise continued fraction approximants, see Schlessinger (1968, Appendix)), to F N ( z ) and evaluating these on the real axis in regions of higher pole density that those of the approximating function. Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …