About the Project

pseudo-spectral methods

AdvancedHelp

(0.003 seconds)

1—10 of 151 matching pages

1: 18.38 Mathematical Applications
Differential Equations: Spectral Methods
Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OP’s) by a method originated by Clenshaw (1957). This process has been generalized to spectral methods for solving partial differential equations. …
Quadrature “Extended” to Pseudo-Spectral (DVR) Representations of Operators in One and Many Dimensions
These methods have become known as pseudo-spectral, and are overviewed in Cerjan (1993), and Shizgal (2015). …
2: 18.39 Applications in the Physical Sciences
§18.39(iii) Non Classical Weight Functions of Utility in DVR Method in the Physical Sciences
Shizgal (2015) gives a broad overview of techniques and applications of spectral and pseudo-spectral methods to problems arising in theoretical chemistry, chemical kinetics, transport theory, and astrophysics. … Shizgal (2015, Chapter 2), contains a broad-ranged discussion of methods and applications for these, and other, non-classical weight functions. …
§18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods
The technique to accomplish this follows the DVR idea, in which methods are based on finding tridiagonal representations of the co-ordinate, x . …
3: 34.9 Graphical Method
§34.9 Graphical Method
The graphical method establishes a one-to-one correspondence between an analytic expression and a diagram by assigning a graphical symbol to each function and operation of the analytic expression. …For an account of this method see Brink and Satchler (1993, Chapter VII). For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
4: 17.18 Methods of Computation
§17.18 Methods of Computation
Method (2) is very powerful when applicable (Andrews (1976, Chapter 5)); however, it is applicable only rarely. Lehner (1941) uses Method (2) in connection with the Rogers–Ramanujan identities. Method (1) can sometimes be improved by application of convergence acceleration procedures; see §3.9. Shanks (1955) applies such methods in several q -series problems; see Andrews et al. (1986).
5: 12.18 Methods of Computation
§12.18 Methods of Computation
Because PCFs are special cases of confluent hypergeometric functions, the methods of computation described in §13.29 are applicable to PCFs. …
6: 34.13 Methods of Computation
§34.13 Methods of Computation
Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). A review of methods of computation is given in Srinivasa Rao and Rajeswari (1993, Chapter VII, pp. 235–265). …
7: 16.25 Methods of Computation
§16.25 Methods of Computation
Methods for computing the functions of the present chapter include power series, asymptotic expansions, integral representations, differential equations, and recurrence relations. …
8: 32.17 Methods of Computation
§32.17 Methods of Computation
The Painlevé equations can be integrated by Runge–Kutta methods for ordinary differential equations; see §3.7(v), Hairer et al. (2000), and Butcher (2003). …
9: 29.20 Methods of Computation
§29.20 Methods of Computation
A second approach is to solve the continued-fraction equations typified by (29.3.10) by Newton’s rule or other iterative methods; see §3.8. … A third method is to approximate eigenvalues and Fourier coefficients of Lamé functions by eigenvalues and eigenvectors of finite matrices using the methods of §§3.2(vi) and 3.8(iv). …The numerical computations described in Jansen (1977) are based in part upon this method. A fourth method is by asymptotic approximations by zeros of orthogonal polynomials of increasing degree. …
10: 3.8 Nonlinear Equations
Bisection Method
Secant Method
Steffensen’s Method
Eigenvalue Methods