About the Project

generalized sine and cosine integrals

AdvancedHelp

(0.011 seconds)

11—20 of 66 matching pages

11: 22.14 Integrals
§22.14 Integrals
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
§22.14(iii) Other Indefinite Integrals
§22.14(iv) Definite Integrals
12: 15.17 Mathematical Applications
§15.17(ii) Conformal Mappings
Hypergeometric functions, especially complete elliptic integrals, also play an important role in quasiconformal mapping. … Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform. … Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)). …
13: 14.5 Special Values
14.5.11 𝖯 ν 1 / 2 ( cos θ ) = ( 2 π sin θ ) 1 / 2 cos ( ( ν + 1 2 ) θ ) ,
14.5.14 𝖰 ν 1 / 2 ( cos θ ) = ( π 2 sin θ ) 1 / 2 cos ( ( ν + 1 2 ) θ ) ν + 1 2 .
§14.5(v) μ = 0 , ν = ± 1 2
In this subsection K ( k ) and E ( k ) denote the complete elliptic integrals of the first and second kinds; see §19.2(ii). …
14: 4.37 Inverse Hyperbolic Functions
The principal values (or principal branches) of the inverse sinh , cosh , and tanh are obtained by introducing cuts in the z -plane as indicated in Figure 4.37.1(i)-(iii), and requiring the integration paths in (4.37.1)–(4.37.3) not to cross these cuts. …The principal branches are denoted by arcsinh , arccosh , arctanh respectively. Each is two-valued on the corresponding cut(s), and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
15: 14.12 Integral Representations
14.12.1 𝖯 ν μ ( cos θ ) = 2 1 / 2 ( sin θ ) μ π 1 / 2 Γ ( 1 2 μ ) 0 θ cos ( ( ν + 1 2 ) t ) ( cos t cos θ ) μ + ( 1 / 2 ) d t , 0 < θ < π , μ < 1 2 .
14.12.3 𝖰 ν μ ( cos θ ) = π 1 / 2 Γ ( ν + μ + 1 ) ( sin θ ) μ 2 μ + 1 Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) ( 0 ( sinh t ) 2 μ ( cos θ + i sin θ cosh t ) ν + μ + 1 d t + 0 ( sinh t ) 2 μ ( cos θ i sin θ cosh t ) ν + μ + 1 d t ) , 0 < θ < π , μ > 1 2 , ν ± μ > 1 .
14.12.6 𝑸 ν μ ( x ) = π 1 / 2 ( x 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( x + ( x 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 .
16: 4.23 Inverse Trigonometric Functions
The principal values (or principal branches) of the inverse sine, cosine, and tangent are obtained by introducing cuts in the z -plane as indicated in Figures 4.23.1(i) and 4.23.1(ii), and requiring the integration paths in (4.23.1)–(4.23.3) not to cross these cuts. …The principal branches are denoted by arcsin z , arccos z , arctan z , respectively. Each is two-valued on the corresponding cuts, and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
Inverse Sine
Inverse Cosine
17: Bibliography B
  • W. Bartky (1938) Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys. 10, pp. 264–269.
  • B. L. J. Braaksma and B. Meulenbeld (1967) Integral transforms with generalized Legendre functions as kernels. Compositio Math. 18, pp. 235–287.
  • V. Britanak, P. C. Yip, and K. R. Rao (2007) Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations. Elsevier/Academic Press, Amsterdam.
  • R. Bulirsch (1967) Numerical calculation of the sine, cosine and Fresnel integrals. Numer. Math. 9 (5), pp. 380–385.
  • P. J. Bushell (1987) On a generalization of Barton’s integral and related integrals of complete elliptic integrals. Math. Proc. Cambridge Philos. Soc. 101 (1), pp. 1–5.
  • 18: Bibliography S
  • R. P. Sagar (1991a) A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals. Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • R. S. Scorer (1950) Numerical evaluation of integrals of the form I = x 1 x 2 f ( x ) e i ϕ ( x ) 𝑑 x and the tabulation of the function Gi ( z ) = ( 1 / π ) 0 sin ( u z + 1 3 u 3 ) 𝑑 u . Quart. J. Mech. Appl. Math. 3 (1), pp. 107–112.
  • D. V. Slavić (1974) Complements to asymptotic development of sine cosine integrals, and auxiliary functions. Univ. Beograd. Publ. Elecktrotehn. Fak., Ser. Mat. Fiz. 461–497, pp. 185–191.
  • I. A. Stegun and R. Zucker (1976) Automatic computing methods for special functions. III. The sine, cosine, exponential integrals, and related functions. J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 291–311.
  • 19: 19.23 Integral Representations
    §19.23 Integral Representations
    19.23.6 4 π R F ( x , y , z ) = 0 2 π 0 π sin θ d θ d ϕ ( x sin 2 θ cos 2 ϕ + y sin 2 θ sin 2 ϕ + z cos 2 θ ) 1 / 2 ,
    In (19.23.8)–(19.23.10) one or more of the variables may be 0 if the integral converges. … With l 1 , l 2 , l 3 denoting any permutation of sin θ cos ϕ , sin θ sin ϕ , cos θ , … For generalizations of (19.23.6_5) and (19.23.8) see Carlson (1964, (6.2), (6.12), and (6.1)).
    20: 19.14 Reduction of General Elliptic Integrals
    §19.14 Reduction of General Elliptic Integrals
    In (19.14.1)–(19.14.3) both the integrand and cos ϕ are assumed to be nonnegative. …More generally in (19.14.4), …
    §19.14(ii) General Case