About the Project

discrete q-Hermite I and II polynomials

AdvancedHelp

(0.002 seconds)

1—10 of 134 matching pages

1: 18.1 Notation
β–Ί
  • Discrete q -Hermite I: h n ⁑ ( x ; q ) .

  • β–Ί
  • Discrete q -Hermite II: h ~ n ⁑ ( x ; q ) .

  • 2: 18.27 q -Hahn Class
    β–Ί
    §18.27(vii) Discrete q -Hermite I and II Polynomials
    β–Ί
    18.27.22 β„“ = 0 ( h n ⁑ ( q β„“ ; q ) ⁒ h m ⁑ ( q β„“ ; q ) + h n ⁑ ( q β„“ ; q ) ⁒ h m ⁑ ( q β„“ ; q ) ) ⁒ ( q β„“ + 1 , q β„“ + 1 ; q ) ⁒ q β„“ = ( q ; q ) n ⁒ ( q , 1 , q ; q ) ⁒ q n ⁒ ( n 1 ) / 2 ⁒ Ξ΄ n , m .
    β–Ί
    Discrete q -Hermite II
    β–ΊFor discrete q -Hermite II polynomials the measure is not uniquely determined. … β–Ί
    18.27.26 lim q 1 h ~ n ⁑ ( ( 1 q 2 ) 1 2 ⁒ x ; q ) ( 1 q 2 ) n / 2 = 2 n ⁒ H n ⁑ ( x ) .
    3: 18.3 Definitions
    β–ΊIn addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ⁑ ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ⁑ ( x ) : … β–ΊFor another version of the discrete orthogonality property of the polynomials T n ⁑ ( x ) see (3.11.9). …
    4: Bibliography H
    β–Ί
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • β–Ί
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I 1 ⁒ ( x ) / I 0 ⁒ ( x ) , I 1.5 ⁒ ( x ) / I 0.5 ⁒ ( x ) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • β–Ί
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • β–Ί
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • β–Ί
  • I. Huang and S. Huang (1999) Bernoulli numbers and polynomials via residues. J. Number Theory 76 (2), pp. 178–193.
  • 5: 18.38 Mathematical Applications
    β–Ί
    Quadrature “Extended” to Pseudo-Spectral (DVR) Representations of Operators in One and Many Dimensions
    6: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    β–Ί
    1.18.20 Ξ΄ n , m = a b Ο• n ⁒ ( x ) ⁒ Ο• m ⁒ ( x ) ¯ ⁒ d x .
    7: 18.19 Hahn Class: Definitions
    §18.19 Hahn Class: Definitions
    β–ΊThe Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. … β–Ί
  • 1.

    Hahn class (or linear lattice class). These are OP’s p n ⁑ ( x ) where the role of d d x is played by Ξ” x or x or Ξ΄ x (see §18.1(i) for the definition of these operators). The Hahn class consists of four discrete and two continuous families.

  • β–ΊThe Hahn class consists of four discrete families (Hahn, Krawtchouk, Meixner, and Charlier) and two continuous families (continuous Hahn and Meixner–Pollaczek). … β–ΊTables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials Q n ⁑ ( x ; Ξ± , Ξ² , N ) , Krawtchouk polynomials K n ⁑ ( x ; p , N ) , Meixner polynomials M n ⁑ ( x ; Ξ² , c ) , and Charlier polynomials C n ⁑ ( x ; a ) . …
    8: 18.35 Pollaczek Polynomials
    §18.35 Pollaczek Polynomials
    β–ΊThere are 3 types of Pollaczek polynomials: … β–ΊFor the monic polynomialsβ–Ί
    §18.35(ii) Orthogonality
    β–Ίwhere, depending on a , b , Ξ» , D is a discrete subset of ℝ and the w ΞΆ ( Ξ» ) ⁒ ( a , b ) are certain weights. …
    9: 18.39 Applications in the Physical Sciences
    β–Ί
    w x k CP = ( l + 1 + 2 ⁒ Z s ) ⁒ ρ 2 ⁒ k 1 ⁒ ( 1 ρ 2 ) 2 ⁒ l + 3 ⁒ ( 2 ⁒ l + 2 ) k 2 ⁒ ( k + l + 1 ) ⁒ k ! .
    β–Ί
    Discretized and Continuum Expansions of Scattering Eigenfunctions in terms of Pollaczek Polynomials: J-matrix Theory
    10: 18.18 Sums
    β–Ί
    18.18.27 n = 0 n ! ⁒ L n ( Ξ± ) ⁑ ( x ) ⁒ L n ( Ξ± ) ⁑ ( y ) ( Ξ± + 1 ) n ⁒ z n = Ξ“ ⁑ ( Ξ± + 1 ) ⁒ ( x ⁒ y ⁒ z ) 1 2 ⁒ Ξ± 1 z ⁒ exp ⁑ ( ( x + y ) ⁒ z 1 z ) ⁒ I Ξ± ⁑ ( 2 ⁒ ( x ⁒ y ⁒ z ) 1 2 1 z ) , | z | < 1 .
    β–ΊFor the modified Bessel function I Ξ½ ⁑ ( z ) see §10.25(ii). …