About the Project

Rossby waves

AdvancedHelp

(0.001 seconds)

1—10 of 82 matching pages

1: 30.1 Special Notation
β–ΊThe main functions treated in this chapter are the eigenvalues Ξ» n m ⁑ ( Ξ³ 2 ) and the spheroidal wave functions π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) , π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) , 𝑃𝑠 n m ⁑ ( z , Ξ³ 2 ) , 𝑄𝑠 n m ⁑ ( z , Ξ³ 2 ) , and S n m ⁒ ( j ) ⁑ ( z , Ξ³ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for π–―π—Œ , π–°π—Œ , 𝑃𝑠 , 𝑄𝑠 , respectively. β–Ί
Other Notations
β–ΊFlammer (1957) and Abramowitz and Stegun (1964) use Ξ» m ⁒ n ⁒ ( Ξ³ ) for Ξ» n m ⁑ ( Ξ³ 2 ) + Ξ³ 2 , R m ⁒ n ( j ) ⁑ ( Ξ³ , z ) for S n m ⁒ ( j ) ⁑ ( z , Ξ³ ) , and …
2: 30.11 Radial Spheroidal Wave Functions
§30.11 Radial Spheroidal Wave Functions
β–Ί
§30.11(i) Definitions
β–Ί
Connection Formulas
β–Ί
§30.11(ii) Graphics
β–Ί
§30.11(iv) Wronskian
3: 31.17 Physical Applications
β–ΊMore applications—including those of generalized spheroidal wave functions and confluent Heun functions in mathematical physics, astrophysics, and the two-center problem in molecular quantum mechanics—can be found in Leaver (1986) and Slavyanov and Lay (2000, Chapter 4). For application of biconfluent Heun functions in a model of an equatorially trapped Rossby wave in a shear flow in the ocean or atmosphere see Boyd and Natarov (1998).
4: Sidebar 21.SB1: Periodic Surface Waves
Sidebar 21.SB1: Periodic Surface Waves
β–ΊTwo-dimensional periodic waves in a shallow water wave tank. Taken from Joe Hammack, Daryl McCallister, Norman Scheffner and Harvey Segur, “Two-dimensional periodic waves in shallow water. …Asymmetric waves”, J. …The caption reads “Mosaic of two overhead photographs, showing surface patterns of waves in shallow water”. …
5: 30.10 Series and Integrals
β–ΊIntegrals and integral equations for π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) are given in Arscott (1964b, §8.6), Erdélyi et al. (1955, §16.13), Flammer (1957, Chapter 5), and Meixner (1951). …
6: 30.6 Functions of Complex Argument
§30.6 Functions of Complex Argument
β–ΊThe solutions β–Ί
𝑃𝑠 n m ⁑ ( z , Ξ³ 2 ) ,
β–Ί
𝑄𝑠 n m ⁑ ( z , Ξ³ 2 ) ,
β–Ί
7: 29.11 Lamé Wave Equation
§29.11 Lamé Wave Equation
β–ΊThe Lamé (or ellipsoidal) wave equation is given by …
8: 11.12 Physical Applications
§11.12 Physical Applications
β–ΊApplications of Struve functions occur in water-wave and surface-wave problems (Hirata (1975) and Ahmadi and Widnall (1985)), unsteady aerodynamics (Shaw (1985) and Wehausen and Laitone (1960)), distribution of fluid pressure over a vibrating disk (McLachlan (1934)), resistive MHD instability theory (Paris and Sy (1983)), and optical diffraction (Levine and Schwinger (1948)). …
9: 30.5 Functions of the Second Kind
§30.5 Functions of the Second Kind
β–Ί
30.5.1 π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) , n = m , m + 1 , m + 2 , .
β–Ί
30.5.2 π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) = ( 1 ) n m + 1 ⁒ π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) ,
β–Ί β–Ί
30.5.4 𝒲 ⁑ { π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) , π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) } = ( n + m ) ! ( 1 x 2 ) ⁒ ( n m ) ! ⁒ A n m ⁑ ( Ξ³ 2 ) ⁒ A n m ⁑ ( Ξ³ 2 ) ( 0 ) ,
10: 30.17 Tables
§30.17 Tables
β–Ί
  • Flammer (1957) includes 18 tables of eigenvalues, expansion coefficients, spheroidal wave functions, and other related quantities. Precision varies between 4S and 10S.

  • β–Ί
  • Hanish et al. (1970) gives Ξ» n m ⁑ ( Ξ³ 2 ) and S n m ⁒ ( j ) ⁑ ( z , Ξ³ ) , j = 1 , 2 , and their first derivatives, for 0 m 2 , m n m + 49 , 1600 Ξ³ 2 1600 . The range of z is given by 1 z 10 if Ξ³ 2 > 0 , or z = i ⁒ ΞΎ , 0 ΞΎ 2 if Ξ³ 2 < 0 . Precision is 18S.

  • β–Ί
  • EraΕ evskaja et al. (1973, 1976) gives S m ⁒ ( j ) ⁑ ( i ⁒ y , i ⁒ c ) , S m ⁒ ( j ) ⁑ ( z , Ξ³ ) and their first derivatives for j = 1 , 2 , 0.5 c 8 , y = 0 , 0.5 , 1 , 1.5 , 0.5 Ξ³ 8 , z = 1.01 , 1.1 , 1.4 , 1.8 . Precision is 15S.

  • β–Ί
  • Zhang and Jin (1996) includes 24 tables of eigenvalues, spheroidal wave functions and their derivatives. Precision varies between 6S and 8S.