30.1 Special Notation30.3 Eigenvalues

§30.2 Differential Equations

Contents

§30.2(i) Spheroidal Differential Equation

30.2.1\frac{d}{dz}\left((1-z^{2})\frac{dw}{dz}\right)+\left(\lambda+\gamma^{2}(1-z^{2})-\frac{\mu^{2}}{1-z^{2}}\right)w=0.

This equation has regular singularities at z=\pm 1 with exponents \pm\frac{1}{2}\mu and an irregular singularity of rank 1 at z=\infty (if \gamma\neq 0). The equation contains three real parameters \lambda, \gamma^{2}, and \mu. In applications involving prolate spheroidal coordinates \gamma^{2} is positive, in applications involving oblate spheroidal coordinates \gamma^{2} is negative; see §§30.13, 30.14.

§30.2(ii) Other Forms

The Liouville normal form of equation (30.2.1) is

30.2.2\frac{{d}^{2}g}{{dt}^{2}}+\left(\lambda+\frac{1}{4}+\gamma^{2}{\mathop{\sin\/}\nolimits^{{2}}}t-\frac{\mu^{2}-\frac{1}{4}}{{\mathop{\sin\/}\nolimits^{{2}}}t}\right)g=0,
30.2.3
z=\mathop{\cos\/}\nolimits t,
w(z)=(1-z^{2})^{{-\frac{1}{4}}}g(t).

With \zeta=\gamma z Equation (30.2.1) changes to

30.2.4(\zeta^{2}-\gamma^{2})\frac{{d}^{2}w}{{d\zeta}^{2}}+2\zeta\frac{dw}{d\zeta}+\left(\zeta^{2}-\lambda-\gamma^{2}-\frac{\gamma^{2}\mu^{2}}{\zeta^{2}-\gamma^{2}}\right)w=0.

§30.2(iii) Special Cases

If \gamma=0, Equation (30.2.1) is the associated Legendre differential equation; see (14.2.2). If \mu^{2}=\frac{1}{4}, Equation (30.2.2) reduces to the Mathieu equation; see (28.2.1). If \gamma=0, Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).