About the Project

Pollaczek polynomials

AdvancedHelp

(0.003 seconds)

11—20 of 20 matching pages

11: 18.26 Wilson Class: Continued
18.26.8 lim t S n ( ( x t ) 2 ; λ + i t , λ i t , t cot ϕ ) / t n = n ! ( csc ϕ ) n P n ( λ ) ( x ; ϕ ) .
12: 15.9 Relations to Other Functions
13: Errata
This release is the result of that decision and it includes, among other new material, enlarged sections on associated OP’s, Pollaczek polynomials and physical applications. …
  • Equation (18.35.1)
    18.35.1
    P 1 ( λ ) ( x ; a , b , c ) = 0 ,
    P 0 ( λ ) ( x ; a , b , c ) = 1

    These equations which were previously given for Pollaczek polynomials of type 2 has been updated for Pollaczek polynomials of type 3.

  • Equation (18.35.2)
    18.35.2 P n + 1 ( λ ) ( x ; a , b , c ) = 2 ( n + c + λ + a ) x + 2 b n + c + 1 P n ( λ ) ( x ; a , b , c ) n + c + 2 λ 1 n + c + 1 P n 1 ( λ ) ( x ; a , b , c ) , n = 0 , 1 ,

    This recurrence relation which was previously given for Pollaczek polynomials of type 2 (the case c = 0 ) has been updated for Pollaczek polynomials of type 3.

  • Equation (18.35.5)
    18.35.5 1 1 P n ( λ ) ( x ; a , b ) P m ( λ ) ( x ; a , b ) w ( λ ) ( x ; a , b ) d x = Γ ( 2 λ + n ) n ! ( λ + a + n ) δ n , m , a b a , λ > 0

    This equation was updated to give the full normalization. Previously the constraints on a , b and λ were given in (18.35.6) and included λ > 1 2 . The case 1 2 < λ 0 is now discussed in (18.35.6_2)–(18.35.6_4).

  • Equation (18.35.9)
    18.35.9
    P n ( λ ) ( x ; ϕ ) = P n ( λ ) ( cos ϕ ; 0 , x sin ϕ ) ,
    P n ( λ ) ( cos θ ; a , b ) = P n ( λ ) ( τ a , b ( θ ) ; θ )

    Previously we gave only the first identity P n ( λ ) ( cos ϕ ; 0 , x sin ϕ ) = P n ( λ ) ( x ; ϕ ) .

  • 14: DLMF Project News
    error generating summary
    15: Bibliography K
  • T. H. Koornwinder (1989) Meixner-Pollaczek polynomials and the Heisenberg algebra. J. Math. Phys. 30 (4), pp. 767–769.
  • 16: Bibliography L
  • X. Li and R. Wong (2001) On the asymptotics of the Meixner-Pollaczek polynomials and their zeros. Constr. Approx. 17 (1), pp. 59–90.
  • 17: 18.2 General Orthogonal Polynomials
    This happens, for example, with the continuous Hahn polynomials and Meixner–Pollaczek polynomials18.20(i)). … The generating functions (18.12.13), (18.12.15), (18.23.3), (18.23.4), (18.23.5) and (18.23.7) for Laguerre, Hermite, Krawtchouk, Meixner, Charlier and Meixner–Pollaczek polynomials, respectively, can be written in the form (18.2.45). …
    18: Bibliography B
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • 19: 18.40 Methods of Computation
    The example chosen is inversion from the α n , β n for the weight function for the repulsive Coulomb–Pollaczek, RCP, polynomials of (18.39.50). …
    20: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • F. Pollaczek (1949a) Sur une généralisation des polynomes de Legendre. C. R. Acad. Sci. Paris 228, pp. 1363–1365.
  • F. Pollaczek (1949b) Systèmes de polynomes biorthogonaux qui généralisent les polynomes ultrasphériques. C. R. Acad. Sci. Paris 228, pp. 1998–2000.
  • F. Pollaczek (1950) Sur une famille de polynômes orthogonaux à quatre paramètres. C. R. Acad. Sci. Paris 230, pp. 2254–2256.