About the Project

Heine integral

AdvancedHelp

(0.001 seconds)

11—20 of 425 matching pages

11: 14.28 Sums
§14.28(ii) Heine’s Formula
12: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • J. F. Van Diejen and V. P. Spiridonov (2001) Modular hypergeometric residue sums of elliptic Selberg integrals. Lett. Math. Phys. 58 (3), pp. 223–238.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • 13: 17.6 ϕ 1 2 Function
    Heine’s First Transformation
    Heine’s Second Tranformation
    Heine’s Third Transformation
    Heine’s Contiguous Relations
    §17.6(v) Integral Representations
    14: 28.18 Integrals and Integral Equations
    §28.18 Integrals and Integral Equations
    15: 18.11 Relations to Other Functions
    §18.11(ii) Formulas of Mehler–Heine Type
    16: 19.35 Other Applications
    §19.35(i) Mathematical
    Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)).
    §19.35(ii) Physical
    17: 6.1 Special Notation
    Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the exponential integrals Ei ( x ) , E 1 ( z ) , and Ein ( z ) ; the logarithmic integral li ( x ) ; the sine integrals Si ( z ) and si ( z ) ; the cosine integrals Ci ( z ) and Cin ( z ) .
    18: 25.7 Integrals
    §25.7 Integrals
    For definite integrals of the Riemann zeta function see Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a, §3.2), and Prudnikov et al. (1992b, §3.2).
    19: 36.3 Visualizations of Canonical Integrals
    §36.3 Visualizations of Canonical Integrals
    §36.3(i) Canonical Integrals: Modulus
    §36.3(ii) Canonical Integrals: Phase
    In Figure 36.3.13(a) points of confluence of phase contours are zeros of Ψ 2 ( x , y ) ; similarly for other contour plots in this subsection. In Figure 36.3.13(b) points of confluence of all colors are zeros of Ψ 2 ( x , y ) ; similarly for other density plots in this subsection. …
    20: 6.14 Integrals
    §6.14 Integrals
    §6.14(i) Laplace Transforms
    §6.14(ii) Other Integrals
    6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).