About the Project

Hadamard inequality for determinants

AdvancedHelp

(0.001 seconds)

11—20 of 90 matching pages

11: 6.8 Inequalities
§6.8 Inequalities
12: Bibliography Q
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • F. Qi (2008) A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214 (2), pp. 610–616.
  • 13: 10.37 Inequalities; Monotonicity
    §10.37 Inequalities; Monotonicity
    For sharper inequalities when the variables are real see Paris (1984) and Laforgia (1991). …
    14: 18.14 Inequalities
    §18.14 Inequalities
    Legendre
    Jacobi
    Szegő–Szász Inequality
    15: 7.8 Inequalities
    §7.8 Inequalities
    7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
    7.8.8 erf x < 1 e 4 x 2 / π , x > 0 .
    16: Bibliography K
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • K. Kajiwara and Y. Ohta (1998) Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31 (10), pp. 2431–2446.
  • D. Kershaw (1983) Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (164), pp. 607–611.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • 17: 24.9 Inequalities
    §24.9 Inequalities
    Except where otherwise noted, the inequalities in this section hold for n = 1 , 2 , . …
    18: Bibliography M
  • T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
  • T. Masuda (2003) On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade. Funkcial. Ekvac. 46 (1), pp. 121–171.
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • D. S. Mitrinović (1964) Elementary Inequalities. P. Noordhoff Ltd., Groningen.
  • D. S. Mitrinović (1970) Analytic Inequalities. Springer-Verlag, New York.
  • 19: 4.5 Inequalities
    §4.5 Inequalities
    §4.5(i) Logarithms
    For more inequalities involving the logarithm function see Mitrinović (1964, pp. 75–77), Mitrinović (1970, pp. 272–276), and Bullen (1998, pp. 159–160).
    §4.5(ii) Exponentials
    (When x = 0 the inequalities become equalities.) …
    20: 4.18 Inequalities
    §4.18 Inequalities
    Jordan’s Inequality
    For more inequalities see Mitrinović (1964, pp. 101–111), Mitrinović (1970, pp. 235–265), and Bullen (1998, pp. 250–254).