About the Project

Bernoulli numbers

AdvancedHelp

(0.004 seconds)

11—20 of 59 matching pages

11: 24.4 Basic Properties
24.4.7 k = 1 m k n = B n + 1 ( m + 1 ) B n + 1 n + 1 ,
24.4.25 B n ( 0 ) = ( 1 ) n B n ( 1 ) = B n .
24.4.27 B n ( 1 2 ) = ( 1 2 1 n ) B n ,
24.4.31 B n ( 1 4 ) = ( 1 ) n B n ( 3 4 ) = 1 2 1 n 2 n B n n 4 n E n 1 , n = 1 , 2 , .
§24.4(ix) Relations to Other Functions
12: 24.9 Inequalities
§24.9 Inequalities
24.9.1 | B 2 n | > | B 2 n ( x ) | , 1 > x > 0 ,
24.9.2 ( 2 2 1 2 n ) | B 2 n | | B 2 n ( x ) B 2 n | , 1 x 0 .
24.9.6 5 π n ( n π e ) 2 n > ( 1 ) n + 1 B 2 n > 4 π n ( n π e ) 2 n ,
24.9.8 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 β 2 n ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n 1 1 2 2 n
13: 24.7 Integral Representations
§24.7(i) Bernoulli and Euler Numbers
24.7.1 B 2 n = ( 1 ) n + 1 4 n 1 2 1 2 n 0 t 2 n 1 e 2 π t + 1 d t = ( 1 ) n + 1 2 n 1 2 1 2 n 0 t 2 n 1 e π t sech ( π t ) d t ,
24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
24.7.5 B 2 n = ( 1 ) n 2 n ( 2 n 1 ) π 0 t 2 n 2 ln ( 1 e 2 π t ) d t .
14: 24.13 Integrals
24.13.4 0 1 / 2 B n ( t ) d t = 1 2 n + 1 2 n B n + 1 n + 1 ,
24.13.6 0 1 B n ( t ) B m ( t ) d t = ( 1 ) n 1 m ! n ! ( m + n ) ! B m + n .
24.13.8 0 1 E n ( t ) d t = 2 E n + 1 ( 0 ) n + 1 = 4 ( 2 n + 2 1 ) ( n + 1 ) ( n + 2 ) B n + 2 ,
24.13.9 0 1 / 2 E 2 n ( t ) d t = E 2 n + 1 ( 0 ) 2 n + 1 = 2 ( 2 2 n + 2 1 ) B 2 n + 2 ( 2 n + 1 ) ( 2 n + 2 ) ,
24.13.11 0 1 E n ( t ) E m ( t ) d t = ( 1 ) n 4 ( 2 m + n + 2 1 ) m ! n ! ( m + n + 2 ) ! B m + n + 2 .
15: 24.2 Definitions and Generating Functions
§24.2 Definitions and Generating Functions
B 2 n + 1 = 0 ,
Table 24.2.1: Bernoulli and Euler numbers.
n B n E n
Table 24.2.3: Bernoulli numbers B n = N / D .
n N D B n
16: 24.11 Asymptotic Approximations
§24.11 Asymptotic Approximations
24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
17: 5.15 Polygamma Functions
5.15.8 ψ ( z ) 1 z + 1 2 z 2 + k = 1 B 2 k z 2 k + 1 ,
5.15.9 ψ ( n ) ( z ) ( 1 ) n 1 ( ( n 1 ) ! z n + n ! 2 z n + 1 + k = 1 ( 2 k + n 1 ) ! ( 2 k ) ! B 2 k z 2 k + n ) .
For B 2 k see §24.2(i). …
18: 25.11 Hurwitz Zeta Function
25.11.22 ζ ( 1 2 n , 1 2 ) = B 2 n ln 2 n 4 n ( 2 2 n 1 1 ) ζ ( 1 2 n ) 2 2 n 1 , n = 1 , 2 , 3 , .
25.11.23 ζ ( 1 2 n , 1 3 ) = π ( 9 n 1 ) B 2 n 8 n 3 ( 3 2 n 1 1 ) B 2 n ln 3 4 n 3 2 n 1 ( 1 ) n ψ ( 2 n 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n 1 ( 3 2 n 1 1 ) ζ ( 1 2 n ) 2 3 2 n 1 , n = 1 , 2 , 3 , .
25.11.34 n 0 a ζ ( 1 n , x ) d x = ζ ( n , a ) ζ ( n ) + B n + 1 B n + 1 ( a ) n ( n + 1 ) , n = 1 , 2 , , a > 0 .
25.11.43 ζ ( s , a ) a 1 s s 1 1 2 a s k = 1 B 2 k ( 2 k ) ! ( s ) 2 k 1 a 1 s 2 k .
25.11.44 ζ ( 1 , a ) 1 12 + 1 4 a 2 ( 1 12 1 2 a + 1 2 a 2 ) ln a k = 1 B 2 k + 2 ( 2 k + 2 ) ( 2 k + 1 ) 2 k a 2 k ,
19: 25.1 Special Notation
k , m , n nonnegative integers.
B n , B n ( x ) Bernoulli number and polynomial (§24.2(i)).
20: 24.8 Series Expansions
24.8.6 B 4 n + 2 = ( 8 n + 4 ) k = 1 k 4 n + 1 e 2 π k 1 , n = 1 , 2 , ,
24.8.7 B 2 n = ( 1 ) n + 1 4 n 2 2 n 1 k = 1 k 2 n 1 e π k + ( 1 ) k + n , n = 2 , 3 , .
24.8.8 B 2 n 4 n ( α n ( β ) n ) = α n k = 1 k 2 n 1 e 2 α k 1 ( β ) n k = 1 k 2 n 1 e 2 β k 1 , n = 2 , 3 , .