About the Project

.put世界杯相声汇_『网址:687.vii』世界杯决赛乌龙球_b5p6v3_2022年11月30日4时58分48秒_ucgsamhsa

AdvancedHelp

(0.003 seconds)

11—20 of 180 matching pages

11: 19.21 Connection Formulas
The complete cases of R F and R G have connection formulas resulting from those for the Gauss hypergeometric function (Erdélyi et al. (1953a, §2.9)). … The complete case of R J can be expressed in terms of R F and R D : … Because R G is completely symmetric, x , y , z can be permuted on the right-hand side of (19.21.10) so that ( x z ) ( y z ) 0 if the variables are real, thereby avoiding cancellations when R G is calculated from R F and R D (see §19.36(i)). … Connection formulas for R a ( 𝐛 ; 𝐳 ) are given in Carlson (1977b, pp. 99, 101, and 123–124).
§19.21(iii) Change of Parameter of R J
12: 19.16 Definitions
It should be noted that the integrals (19.16.1)–(19.16.2_5) have been normalized so that R F ( 1 , 1 , 1 ) = R J ( 1 , 1 , 1 , 1 ) = R G ( 1 , 1 , 1 ) = 1 . … and R D is a degenerate case of R J , so is R J a degenerate case of the hyperelliptic integral, … Thus R a ( 𝐛 ; 𝐳 ) is symmetric in the variables z j and z if the parameters b j and b are equal. …
§19.16(iii) Various Cases of R a ( 𝐛 ; 𝐳 )
The only cases that are integrals of the third kind are those in which at least one b j is a positive integer. …
13: 18.40 Methods of Computation
The quadrature points and weights can be put to a more direct and efficient use. …
14: 19.5 Maclaurin and Related Expansions
where F 1 2 is the Gauss hypergeometric function (§§15.1 and 15.2(i)). …where F 1 ( α ; β , β ; γ ; x , y ) is an Appell function (§16.13). … where k 0 = k and
19.5.11 k m + 1 = 1 1 k m 2 1 + 1 k m 2 , m = 0 , 1 , .
15: 19.18 Derivatives and Differential Equations
Let j = / z j , and 𝐞 j be an n -tuple with 1 in the j th place and 0’s elsewhere. Also define … More concisely, if v = R a ( 𝐛 ; 𝐳 ) , then each of (19.16.14)–(19.16.18) and (19.16.20)–(19.16.23) satisfies Euler’s homogeneity relation: …If n = 2 , then elimination of 2 v between (19.18.11) and (19.18.12), followed by the substitution ( b 1 , b 2 , z 1 , z 2 ) = ( b , c b , 1 z , 1 ) , produces the Gauss hypergeometric equation (15.10.1). The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). …
16: 19.23 Integral Representations
19.23.4 R F ( 0 , y , z ) = 2 π 0 π / 2 R C ( y , z cos 2 θ ) d θ = 2 π 0 R C ( y cosh 2 t , z ) d t .
19.23.8 R a ( 𝐛 ; 𝐳 ) = 2 B ( b 1 , b 2 ) 0 π / 2 ( z 1 cos 2 θ + z 2 sin 2 θ ) a ( cos θ ) 2 b 1 1 ( sin θ ) 2 b 2 1 d θ , b 1 , b 2 > 0 ; z 1 , z 2 > 0 .
With l 1 , l 2 , l 3 denoting any permutation of sin θ cos ϕ , sin θ sin ϕ , cos θ ,
19.23.9 R a ( 𝐛 ; 𝐳 ) = 4 Γ ( b 1 + b 2 + b 3 ) Γ ( b 1 ) Γ ( b 2 ) Γ ( b 3 ) 0 π / 2 0 π / 2 ( j = 1 3 z j l j 2 ) a j = 1 3 l j 2 b j 1 sin θ d θ d ϕ , b j > 0 , z j > 0 .
19.23.10 R a ( 𝐛 ; 𝐳 ) = 1 B ( a , a ) 0 1 u a 1 ( 1 u ) a 1 j = 1 n ( 1 u + u z j ) b j d u , a , a > 0 ; a + a = j = 1 n b j ; z j ( , 0 ] .
17: 23.20 Mathematical Applications
An algebraic curve that can be put either into the form …
18: 19.2 Definitions
where p j is a polynomial in t while ρ and σ are rational functions of t . … Here a , b , p are real parameters, and k c and x are real or complex variables, with p 0 , k c 0 . … If 1 < k 1 / sin ϕ , then k c is pure imaginary. …
§19.2(iv) A Related Function: R C ( x , y )
For the special cases of R C ( x , x ) and R C ( 0 , y ) see (19.6.15). …
19: 26.2 Basic Definitions
Table 26.2.1: Partitions p ( n ) .
n p ( n ) n p ( n ) n p ( n )
6 11 23 1255 40 37338
9 30 26 2436 43 63261
11 56 28 3718 45 89134
13 101 30 5604 47 1 24754
14 135 31 6842 48 1 47273
20: 18.12 Generating Functions
Note that (18.12.2_5) yields (18.12.1) by putting γ = 0 and (18.12.2) by replacing z by γ 2 z and next letting γ . …